
Automatic Adaptive Page-size Control for Remote Memory Paging

Hiroko Midorikawa, Joe Uchiyama
Graduate School of Science and Technology,

Seikei University,
Tokyo, Japan

midori@st.seikei.ac.jp

Abstract—An automatic adaptive page size control
methodology is proposed for remote memory paging. It
estimates a working data set and changes page size
dynamically and adaptively to each processing part of an
application during it is running. It is highly effective to
prevent memory server thrashing when the size of local
memory is limited.

Keywords- memory paging; memory server; page swap; page
size; thrashing; page-based system

I. INTRODUCTION
To determine the most efficient size of data for

transmitting over network is sometimes difficult. It is
influenced by not only the network bandwidth and the
latency but also the frequency and the granularity of data
demands from application programs. Similarly, the page size
in remote memory paging systems sometimes drastically
influences the performance of application programs.

Authors already proposed a user-level remote memory
paging system, DLM [1][2], which offered virtual large
memory using distributed remote node memory in a cluster.
User-defined page size is available for transmitting data
between a local host and remote memory servers in DLM as
shown in Fig.1. Generally, fewer transmitting with large
page size is efficient for most of the applications under usual
conditions. However, frequent transmitting with small page
size sometimes achieves better performance under special
conditions, where large size of working data set is required
by an iterative application on very limited size of local
memory.

Fig.2 shows the relationship between page size and
relative execution time using remote memory with DLM
compared to ordinary execution time using only local
memory. In NPB BT, SP and FT [4], only 5% -10% of total
data memory required by the each program resides in local
memory and the remaining 90%-95 % of data resides in
remote memory. In other words, the programs use 10 - 20
times larger size of memory beyond local memory. Their
performances are drastically degraded as page size becomes
larger. In these cases, the working data set of the iterative
application overflows the small local memory and causes
thrashing between local host and memory servers. On the
other hand, Himeno benchmark [3], which shows a typical
case, performs better as page size becomes larger. It depends
on a relative relationship between absolute size of local
memory and a memory access pattern that is specific to the
type of applications and the size of problems. So it is

difficult to determine the optimal page size before program
running. Moreover, even in one application program,
optimal page size may vary depending on the memory
access pattern in each part of the processing that consists of
the program.

This paper proposes an automatic adaptive page size
control mechanism, which repeatedly estimates a working
data set size and changes page size dynamically and
adaptively to each processing part of an iterative application
during it is running. It achieves great effectiveness for
various applications.

Figure 1. Remote memory paging in virtual large memory in a cluster

Figure 2. The worst examples of performance degradation by fixed page

size for NPB and a typical normal example of Himeno Benchmark

II. AUTOMATIC ADAPTIVE PAGE SIZE CONTROL: AAPC
Basic idea of page size control is to prevent thrashing by

choosing an appropriate page size, by which the working
data set of an application is made to fit in the local memory
as shown in Fig.3. If there is no thrashing, larger page size is
usually preferable for efficient communication and data
access locality.

Figure 3. The automatic page size control to depress page thrashing

A. Estimation of Working Data Set Size in Applications
To investigate the exact working data set, WS, of an

application is difficult and not realistic from the point of
view of measuring overhead. So we approximate the size of
WS with the size of swap-in page set, WS page count,
during a predefined period that corresponds to each
processing part of an application. The preciseness of
measured WS size depends on a resolution, which is the
page size used in the page count measurement during the
application is running. If page size is changed, the resolution
varies and the measured size of swap-in page set, WS page
count, may vary. So the size of WS, WS page count, for
each processing part recorded in the DLM system is updated
whenever new page size is employed.

B. Criterion for Page Size Control
Decision of page size change is based on the comparison

of WS page count explained above and Local page count,
which equals local memory size divided by current page size.

(1) If WS Page count > Local Page count, a thrashing

occurs. Change page size small as closely as the
following Target Size.

 Target Size = Local Memory Size / WS Page count

(2) If WS Page count <= Local Page count, there is no

thrashing. Change page size little larger to expect more
efficient communication, e.g. double the current page
size.

C. Adaptive Page Size Changing
Adaptive page size is realized by a unified transmission

of multiple basic minimum pages as shown in Fig.4 (a). It
also supports a transmission of a transient fragmented large
page in Fig.4 (b) generated when page size is changed from
small to large. It is possible to coexistence of multiple sizes
of pages in DLM. The current implementation supports 7
variations for available page size, i.e. basic size, double size,
x 4 size, x8 size, x16 size, x 32 size, x 64 size. Users can set
favorite basic minimum page size and initial start page size
when they run their programs if they do not want to use the
default values.

Figure 4. (a) Unifed multiple basic pages used in adaptive page size
control (b) An example of transitional fragmented page after page size is
changed from small to large

III. EFFECTIVENESS OF AAPC
Four benchmarks in Fig.1 are used for an evaluation of

the AAPC. This experiment employs 16KB as the basic
minimum page size and 1MB as the maximum page size.
The initial page size when a program starts is set to 128KB.
The experimental environment is shown in Table 1.

The AAPC performed satisfactorily for all programs.
Fig.5 and Fig.6 show relative execution times in both cases
of AAPC and fixed-size page for BT and SP respectively.
They are the most effective cases with AAPC. The AAPC
changes the initial page size to smaller size in the most of
processing parts in BT and SP. In SP, AAPC accelerated its
performance better than the best one with fixed page size of
32KB as shown in Fig.6. It was caused by the adaptive page
size changing to each part of processing in SP. Fig.8 shows
the execution time of each processing part of SP, and it
shows SP has 2 optimal page size 16KB and 32KB
depending on the processing parts. The AAPC chose the
optimal page size for each processing part dynamically.

On the other hand, relative execution times in Himeno
benchmark with AAPC and fixed-size page are shown in
Fig.8. In this case, the performance does not change
drastically between fixed-size page and the AAPC because
there is no thrashing. The AAPC changes the initial page
size to bigger size to increase the communication efficiency.
It was confirmed that AAPC behaved appropriately for both
cases and proved its effectiveness to relieve the bad impact
of thrashing in the application performance in remote paging.

Figure 5. Relative execution times with AAPC and fixed-page size for
NPB BT (Class A, Local Memory Ratio 5%)

Figure 6. Relative execution times with AAPC and fixed-page size ifor
NPB SP (Class B, Local Memory Ratio 10%)

Figure 7. The execution time of individual processing parts for SP.B
(Local Memory Ratio 10%) with different page sizes, 16KB and 32KB

Figure 8. Relative execution times with AAPC and fixed-page size for
Himeno Benchmark (Medium Size, Local Memory Ratio 10%)

TABLE I. T2K –TOKYO OPEN SUPER COMPUTER

IV. CONCLUSION
The methodology proposed here is very simple but so

effective that it will be applicable for various page-based
memory accessing system, like distributed shared memory
and general paging systems, especially for applications with
various memory access patterns.

ACKNOWLEDGMENT
This work was supported by JSPS KAKENHI 21500062

and MEXT Grant-in-Aid for Building Strategic Research
Infrastructures.

REFERENCES
[1] H. Midorikawa, K.Saito, M.Sato, T.Boku, “Using a Cluster as a

Memory Resource: A Fast and Large Virtual Memory on MPI,” Proc.
IEEE International Conf. of Cluster Computing (Cluster2009), pp.1-
10, 2009

[2] H. Midorikawa, M.Kurokawa, R.Himeno, M.Sato: "DLM: A
Distributed Large Memory System using Remote Memory Swapping
over Cluster Nodes,” Proc. IEEE International Conf. of Cluster
Computing (Cluster2008), pp.268-273, 2008

[3] Himeno Benchmark, URL [Online] 2012-3
http://accc.riken.jp/HPC_e/himenobmt_e.html,

[4] NPB, NAS Parallel Benchmark, URL [Online] 2012-3
http://www.nas.nasa.gov/publications/npb.html

