
User-level Remote Memory Paging
for Multithreaded Applications

Hiroko Midorikawa, Yuichiro Suzuki, Masatoshi Iwaida
Graduate School of Science and Technology, Seikei University and JST CREST, Tokyo, Japan,

midori@st.seikei.ac.jp

Abstract- The new page swap mechanism is introduced to resolve
an inconsistent page problem for multithreaded applications in
user-level remote paging systems. According to the evaluations, its
overhead is limited and it can be applicable to actual use for
multithreaded applications.

Keywords- memory server; distributed shared memory; memory
paging; page swap; remote memory; virtual memory;

I. INTRODUCTION
Memory access detections by page faults and page-based

data retrieving are essential mechanisms for virtual memory in
OS kernel, page-based software distributed shared memory and
remote memory paging. In user-level implementations,
controlling such page management under concurrent page
accesses by multiple threads requires a some kind of additional
mechanism to preserve pages are consistent, unlike the kernel-
level implementations in which a OS manages them. User-
level implementations have advantages in high portability and
easy use for ordinary people without root privilege. Moreover,
there is a case where they gain higher performance and stable
behavior than kernel-implementations [1], because they can
tune and set various system parameters independent from an
OS. In this paper, a simple exclusive page management
mechanism is introduced in a user-level remote memory paging
system for multithreaded applications and its overhead and
effectiveness is evaluated.

In this experiment, a user-level remote memory paging
system, DLM shown in Fig.1, is used. It offers virtual large
memory using distributed node memory in a cluster [1][2]. It is
highly portable to various clusters and easy to use remote
memory for people without any knowledge of MPI. It was
originally designed for users who want to solve a bigger-size
problem that requires large amount of data beyond local
memory size, using existing sequential algorithms and
programs. They prefer and accept extra execution time caused
by partially using remote memory instead of local memory
because converting existing complex algorithms to parallel
MPI programs is not easy task and requires substantial costs.

Recently, easy loop parallelizing by OpenMP and implicitly
multithreaded library functions are available to accelerate the
performance of existing sequential programs. Such a benefit of
multicore also alleviates the slow execution of the programs
accompanied with remote memory paging. The mechanism
proposed here is available to such semi-parallel single-node
multithreaded applications with remote memory paging, as well

as full-parallel multiple-nodes multithreaded programs on
page-based distributed shared memory systems. The
mechanism is straightforward, but it shows effectiveness and
acceptable performance to actual use in several applications.

Figure 1. Remote memory paging used in virtual large memory in a cluster

II. THE PAGE SWAP FOR MULTITHREAD PROGRAMS
The inconsistent page problem caused by a multithreaded

application on remote paging system is shown in Fig.2. In a
calculation host, there are user application threads and a DLM
com-thread that is automatically created when a user program
starts. If user thread-A accesses non-local data, a page fault
occurs and a handler asks the com-thread to retrieve the
specified page from a remote memory server. The com-thread
sends a page request to an appropriate memory server and
receives the page in local host data space. The thread-A is
suspended in the signal handler until the page receiving is
finished. On the other hand, another thread-B has a possibility
to read or write this inconsistent page area while the com-
thread is receiving page data, because the page area is already
set in read/write-possible RW state by the com-thread.

The basic mechanism to prevent from invalid page accessing
from other threads is suspending all user threads until the page
setting is correctly finished. To minimize the suspending time,
another page receive buffer is provided. While a page is being
received in this buffer from a memory server, the
corresponding page area is still NO ACCESS state. After
whole page receiving is finished, all user threads are suspended
and the valid page is copied to the original page area in RW
state, and after that, all threads are restarted.

To send a suspend signal to all user threads, the ID of all
running threads at the moment are necessary. Multithreaded
applications usually use pthread_create() implicitly or
explicitly to create a thread. By using LD_PRELOAD, original
pthread_create() is hooked and a modified version of

2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing

978-0-7695-4996-5/13 $26.00 © 2013 IEEE

DOI 10.1109/CCGrid.2013.63

196

pthread_create() which registers a thread ID in DLM system is
called instead. This mechanism is effective to the programs
creating threads dynamically in fork-join style like OpenMP,
explicit pthread programs, and the pseudo-sequential programs
using multithreaded library functions including implicit thread
creations. This mechanism releases users from paying extra
attentions whether their programs use threads or not.

Figure 2. The inconsistent page problem caused by a multithreaded user

program on remote paging system with no mechanism

III. PERFORMANCE EVALUATION
Three benchmarks including two OpenMP programs, matrix

multiplication (MM) and stencil, one pseudo-sequential FFT
program using fftw multithreaded library are evaluated in three
systems, T2K cluster (16 cores/node, MPICH-MX, Myrinet-10G
x2), FDA cluster (12 cores/node, MPICH, IB 4xQDR, IPonIB) and
CREST cluster (16cores/node, MVAPICH, IB 4xFDR).

A part of the evaluation is shown here. Fig.3 to Fig5 show
relative performances to an ordinary execution in which one
thread using only local memory. They are evaluated with 1 to
16 threads in various local memory ratios (called LMR) of 5%-
100% in T2K and FDA clusters. LMR is the ratio of data size
in local memory to total data size used in an application. LMR
100% stands for using local memory only and LMR 5 % stands
for using 5% of data in the program is in local memory and the
remaining 95% of data is in remote memory. LMR 5% means
that the program uses 20 times bigger size of memory compare
to the local memory size.

MM in Fig.3 shows a little degradation at lower LMR,
because it gains a memory access locality by blocking. It
achieves 6.6 with 12 threads at LMR 10%. In 3D FFT in Fig.4,
thread effectiveness is influenced by cluster’s local memory
bandwidth. T2K relative performance looks good because of a
little degradation at lower LMR. It is caused by the saturated
performance at LMR 100% with low memory bandwidth. In
contrast, FD cluster gains the highest thread effectiveness at
LMR 100% by its high memory bandwidth. Fig.5 shows the
overhead caused by the all-thread suspension proposed here in
the stencil program on FD cluster. The left is a valid case with
the thread suspension and the right is the case without it that
causes invalid results. It is the case that has the biggest
difference. The performances with 6 to 12 threads are
influenced by this thread suspension, but it is acceptable level.
The overhead becomes obvious in calculation dominant
applications and it hides in data access dominant applications,
where threads have more chance to stop calculation to wait data.
In the former case, rich calculation with rare memory accesses
causes high thread effectiveness even in lower LMR.

To resolve an inconsistent page problem for multithreaded
applications in user-level remote paging systems, an implicit
thread ID catching and a thread suspension scheme are
introduced. According to the evaluations, its overhead is
limited and it can be applicable to actual use for multithreaded
applications with a certain level of memory access locality and
calculations. It may become one of the key technologies for
multi-node multithreaded applications on page-based SDSM.

Figure 3. Matrix multiplication (4096x4096) on FDA and T2K clusters

Figure 4. 3D- FFT program using fftw multithreaded library on FDA and
T2K clusters

Figure 5. Thread suspension overhead in stencil program in FDA cluster
(8192x8192, 15x15 mask)

REFERENCES.
 [1] H. Midorikawa, M.Kurokawa, R.Himeno, M.Sato: "DLM:A Distributed
Large Memory System using Remote Memory Swapping over Cluster
Nodes", Proc. of IEEE Internatinal Conf. of Cluster2008, pp.268-273, 2008
[2] H. Midorikawa, K.Saito, M.Sato, T.Boku: "Using a Cluster as a Memory
Resource: A Fast and Large Virtual Memory on MPI", Proc. of IEEE
International Conf. of Cluster Computing, Cluster2009, pp.1-10, 2009

197

