
Locality-Aware Stencil Computations using Flash SSDs as Main Memory Extension

Hiroko Midorikawa, Hideyuki Tan
Department of Computer and Information Science

Seikei University and JST CREST
Tokyo, Japan

midori@st.seikei.ac.jp

Abstract—This paper investigates the performance of flash
solid state drives (SSDs) as an extension to main memory with a
locality-aware algorithm for stencil computations. We propose
three different configurations, swap, mmap, and aio, for
accessing the flash media, with data structure blocking
techniques. Our results indicate that hierarchical blocking
optimizations for three tiers, flash SSD, DRAM, and cache,
perform satisfactorily to bridge the DRAM-flash latency divide.
Using only 32 GiB of DRAM and a flash SSD, with 7-point
stencil computations for a 512 GiB problem (16 times that of the
DRAM), 87% of the Mflops execution performance achieved
with DRAM only was attained.

Keywords-Non-volatile memory; flash memory; memory
hierarchy; tiling; temporal blocking; stencil; out-of-core;
asynchronous IO; mmap; access locality; NUMA; auto-tuning;

I. INTRODUCTION

Scientific computation often requires significant amounts
of memory to tackle large-scale problems and/or for higher
resolution data analysis. One of the common solutions used to
satisfy this requirement is aggregation of distributed
memories over cluster nodes. This is typically accomplished
by increasing the amount of DRAM per node and the number
of nodes in a cluster. However, there is a limit on the extent to
which DRAM can be increased in main memory, because the
number of memory slots that can be accommodated on server
boards is limited. Further, power consumption constraints and
other resource limitations exist.

The advent of various kinds of Non-Volatile Memory
(NVM) ushered in a new era in memory organization and
memory-related software [1][2]. This new era influences not
only the traditional memory hierarchy but also the basic idea
of memory read/write and file IO. In addition, it has the
potential to significantly change traditional programming
models and application programs. Of various NVMs, flash
memory is already widely available to end-users. Its access
time is not as short as that of DRAM, but it provides much
greater capacity at a lower cost and consumes less power.
These points make flash memory one of the promising
candidates for a DRAM extension to the main memory [3][4].

Recent PCIe bus-connected flash SSDs [5][6] achieve
several hundred times faster latency than HDDs, but are still
approximately one thousand times slower than DRAM. The
gap between DRAM and flash SSD is much greater than the
gap between L3 cache and memory, which has only a three to
10 times difference in latency. Thus, the large latency gap
between DRAM and flash SSD makes it difficult to use the
latter as a main memory extension for applications.

Our earlier work [7] investigated the potential of using
flash memory as a large and slow memory for stencil
computations, focusing on the case where the flash memory is
used as a swap device under the fast swap scheme recently
introduced into the Linux kernel [8][9]. In that work, a
locality-aware, hierarchical out-of-core computation
algorithm with data structure blocking techniques was newly
employed to bridge the DRAM-flash latency divide for stencil
computations. It showed that flash memory is viable as large
and slow memory.

Multi-level tiling in spatial and temporal spaces, a well-
known technique to optimize data access locality and
parallelism, has been studied in the literature, but the
algorithms designed for cache-DRAM tiers cannot be used
directly for DRAM-Flash tiers because they introduce
different situations under the existing spatial/temporal
blocking optimizations. One major difference is the access
latency gap between DRAM-Flash tiers, which is much larger
than that between cache-DRAM tiers. Another difference is
actual access granularity and access mechanism. The typical
flash SSD is accessed in blocks, with typical size 512 B or 4
KB, as a block device, whereas cache and DRAM are
accessed in finer grained cache line and word/byte as memory.
Moreover, there are several access paths from an application
to a Flash SSD as a block device in OS kernel layers [12], as
shown in Fig. 1. Each path exhibits a different performance
depending on the version of the OS kernel (Fig. 2), which has
been intensively studied and advances made by incorporating
new features for high-speed NVMs. In addition to the swap
method, we propose two additional configurations, mmap and
aio, for accessing flash media [10] [11]. The aio and mmap
methods achieve more efficient access to flash than the swap
method does, but there remains the possibility of achieving
even better performance through more elaborate tuning.

In this paper, we compare the three methods in terms of
performance with elaborate tuning in blocking data memory
layout, the work-share scheme for multiple cores, and the
affinity control for Non-Uniform Memory architecture
(NUMA) systems. These tunings double the performance of
the mmap and aio methods. As a result, using only 32 GiB of
DRAM and a flash SSD, on 7-point stencil computations for
a 512 GiB problem (16 times larger in size than the DRAM),
87% of the Mflops execution performance achieved using
only DRAM was attained. Further, in a NUMA system, the
same computation for a 1 TiB problem using only 64 GiB of
DRAM and flash, 80% of the Mflops performance achieved
using sufficient DRAM was attained. Through our tuning
experience, we developed a runtime auto-tuning mechanism
to select appropriate parameters in spatial/temporal block

sizes, a work-share scheme for multi-core, and affinity control
for NUMA, by retrieving information on the underlying
system hardware. This alleviates the burden on users of
choosing parameters for the individual systems they utilize.

Figure 1. Multiple paths to block devices from applications

Figure 2. mmap vs. aio in IO bandwidth to flash SSD (ioDrive2) by 16

threads in kernel 2.6.32 and 3.13.0

II. LOCALITY-AWARE STENCIL ALGORITHM AND THREE

METHODS FOR USING FLASH IN THE MEMORY HIERARCHY

Stencil computation is one of the most popular and
important types of processing in various scientific and
engineering simulations. It performs iterative calculations on
a limited dataset, typically the nearest neighbor data. It sweeps
all the data—e.g., three-dimensional (3D) physical data
space—and updates them at each time step. In this paper, 7-
point and 19-point stencil computations using the six and the
18 nearest neighbor points for a 3D data domain individually
are used in general discussion for simplicity.

A. Basic temporal blocking stencil algorithm

A temporal blocking algorithm extracts not only spatial
locality but also temporal locality for iterative applications.
Temporal blocking optimizations have predominantly been
applied to cache and DRAM tiers, the host memory, graphics
processing unit (GPU) memory [13] tiers, and local and
remote nodes in a cluster [14], in order to expedite data access
by exploiting temporal locality. A typical temporal blocking
algorithm for the 3D data domain is shown in Fig. 3.

B. Layered Blocking and three methods for accessing flash

We introduce the blocking techniques on three-layered
data structures in Fig. 4, corresponding to Buffer arrays in
flash memory, Block arrays in DRAM, and virtual iBlock
arrays in L3-cache, to extract access locality [7]. Temporal
blocking is applied to the flash and DRAM tiers and spatial
blocking is applied to the DRAM and cache tiers.

Figure 3. one-level temporal blocking algorithm: pseudo codes for a 3D
domain.

Figure 4. Three-layerd data structure for locality extraction

We propose three options for using a flash SSD as a main
memory extension for application programs [10][11]: (1)
swap method, (2) mmap method, and (3) aio method. In the
swap method, Block arrays in the middle layer and Buffer
arrays in the bottom layer in Fig. 4 are allocated by the
malloc() function in applications and a flash SSD is used as a
swap device under the virtual memory system of the OS. To
prevent the Block arrays being swapped out, they are locked
onto main memory by means of the mlock() function. In the
mmap method, the Block arrays are allocated by malloc() and
the Buffer arrays are represented as files that are memory
mapped by the mmap() function in applications, and a flash
SSD is used as a file system (e.g., ext4). Its access path
corresponds to the arrow (1) in Fig. 2. Both methods are
virtually transparent to applications.

In the aio method, Linux kernel asynchronous input/output
library functions (io_submit and io_getevents) are used in the
applications. The Block arrays are allocated by malloc() and
the Buffer arrays are represented as consecutive blocks on a
flash block device. It requires modification of application
programs from memory-semantic reads/writes to explicit
inputs/outputs to a flash SSD. In our experiment, a flash SSD
is used as a block device and opened with O_DIRECT,
corresponding to the arrow (2) in Fig. 2. It eliminates file-

Figure 5. CPU Utilizations on three methods for 7-point stencil
computation; 64GiB-problem execution on 32GiB-DRAM and a Flash

Figure 6. CPU Utilizations on three methods for 7-point stencil
computation; 64GiB-problem execution on 32GiB-DRAM and a Flash

TABLE I. EXPERIMENTAL ENVIRONMENT

system-layer overhead and kernel-managed buffering, page
cache. Instead, Block arrays in Fig. 4 are used as user page
buffer and are fully controlled by applications. The recent
improvement of block storage stacks in Linux, specifically,
multiple IO request queues for multi-core [15], gives higher
performance to asynchronous IO by multiple threads as shown
in Fig. 2, but it requires block-size-aligned data access. As a
result, the aio method causes complexities and restrictions in
data layout in application programs.

III. PERFORMANCE IMPACT OF TEMPORAL BLOCKING

ALGORITHM IN THE THREE METHODS

In this section, we explore the performance of
the three configurations, swap, mmap, and aio,
using a flash SSD for stencil computations as a
main memory extension. The experimental setting
is outlined in the UMA column of Table I.

The problem used in this preliminary
evaluation was a 7-point stencil for 3D-domain
data, 64 GiB problem, domain size (nx, ny, nz)
2046 × 2048 × 1024 and time step iteration, Nt, 256.
For the temporal blocking algorithm, the spatial
blocking size (bx, by, bz) was 2046 × 512 × 512
and the temporal blocking size, bt, was 128. This
corresponds to two iterations of the eight block
array calculations on 128 local iterations. The
actual DRAM size used in the program was 82.2
GiB, including bt ghost areas in the block arrays,
 as shown in Fig. 4. The performance of the three
methods using limited DRAM (32 GiB) and
sufficient DRAM (128 GiB) was then evaluated.

Figs. 5 and 6 show CPU utilization and IO
bandwidth to flash SSD profiles for each method
during their execution. The 16 sections in which
user CPU utilization is 100% correspond to 8-
block computations in DRAM iterated twice. Each
gap between these block computation parts
corresponds to Input/Output from/to flash memory.
Among the three methods, it can be seen that the
aio method achieves the most efficient IO to flash
memory and reduces its total execution time. Its
peak IO bandwidth achieves almost the maximum
value specified in the flash device, ioDrive2. This
is as a result of the highly parallel asynchronous IO
by multi-core with deep IO queue depth for only

necessary data/block, eliminating the unnecessary page IO
seen in swap and mmap methods.

Fig. 7 shows the relative execution times for the problems
following elaborate tuning (which will be described in section
V). With the aio method, the computation time for the 64 GiB
problem using 32 GiB of DRAM and flash is only 1.5 times
greater (1120 s) than that of the normal execution (740 s)
using sufficient DRAM, 128 GiB. Without the temporal
blocking algorithm, its computation time using 32 GiB
DRAM is 65.2 times greater (48,232 s) than the normal
execution (740 s), as shown in Fig. 7. Temporal blocking has
a significant impact on the performance of the stencil
computation using flash memory. The aio method with
temporal blocking is most effective for execution under
limited DRAM.

Fig. 8 shows the relative effective Mflops for problems of
various sizes using 32 GiB with the aio method. In the 512
GiB problem, execution using only 32 GiB of DRAM
achieves performance that is 87% that of normal execution
using sufficient DRAM in the case of the 16-GiB problem
(leftmost column in Fig. 8).

Figure 7. Relative times for various methods for 7-point stencil comp.

Figure 8. Performances in various-size problems on fixed physical
memory (32GiB)

IV. PERFORMANCE OF AIO AND MMAP METHODS IN

NUMA SYSTEMS

We introduced NUMA-aware computing in the algorithm
for multiple-socket NUMA systems, as well as optimization
for single-socket systems, such as the memory layout of the
Block arrays and a work-share scheme with multi-core.

 In this section, we compare the aio and mmap methods
for problems of various sizes using 7-point and 19-point

stencil computations in the two-socket NUMA system
outlined in Table I. Fig. 9 and 10 show the execution times
and the effective Mflops in the aio and mmap methods,
respectively. The execution time of the aio method is 50–60%
that of the mmap method. Moreover, while under execution
using the mmap method, the 19-point 1 TiB problem is
terminated by an out of memory (OOM) killer in the OS,
because of lack of available memory in the large-size problem
file mmap. In contrast, the execution of the aio method
exhibits stable behavior.

Figure 9. Execution times of various-size problems in aio and mmap

methods

Figure 10. Effective MFlops of various-size problems in aio and mmap
methods

Figure 11. Relative performances in various-size problems on fixed

physical memory (64GiB) in a NUMA system

Fig. 11 shows the relative Mflops in the aio method based
on the performance of the execution using 64 GiB of physical
memory. The 1 TiB problem execution exhibits 80% of the
performance of the 64 GiB problem in 7-point stencil
computation. Fig. 12 shows the comparison of the aio and

mmap methods in Mflops. The aio method achieves better
performance than that of the mmap method even in the 32 GiB
problems using sufficient DRAM.

Figure 12. Effective MFlops on fixed-size memory (64GiB) in a NUMA

system on aio and mmap methods

V. OPTIMIZATIONS IN THE IMPLEMENTATION

This section describes several performance tuning
strategies used in the implementation of the algorithm for
flash SSDs in section III and IV. The same 64 GiB-problem
in section III was used for the evaluation on UMA systems.

A. Blocking sizes for DRAM-flash SSD tiers

The results of our previous evaluation [7] indicated that,
in the temporal blocking for DRAM-flash tiers, larger
spatial/temporal blocking sizes result in better performance,
as long as the Block arrays fit inside the main memory
(DRAM) capacity. The fact that the access latency of flash
memory is much greater than CPU calculation cycles makes
it very different from the case using a temporal blocking
algorithm applied to cache-DRAM tiers [7]. The latter case
usually has the best tradeoff point between increasing
redundant computation overhead and speedup by exploring
data access locality when choosing temporal blocking sizes.
In addition to choosing a larger volume for the blocking sizes
combination, bt and (bx, by, bz), it is also important to choose
the shape of the array to increase sequential access in memory.
For example, for the same Block array volume, a larger bx is
better than a larger bz.

B. Memory layout of the Block arrays in the aio method

Asynchronous IO parameters, such as start-address, offset,
and size, must be aligned in device block sizes—4 KB in our
case. In the aio method, the Block arrays in Fig. 4 are
implemented with a z-dimension pointer-array and multiple
xy-planes pointed to by a pointer in the z-dimension array.
This is in contrast to the layout in the mmap and swap methods,
where they are implemented as a typical sequential C memory
array. The start-address and the size of each xy-plane in the
aio method are aligned in device block size. Each xy-plane is
a unit comprising asynchronous IOs by multiple threads in
parallel.

The performance of the three memory layouts is compared
in Fig. 12. In the individual layout, each xy-plane is allocated
with the posix_memaligned() function. Thus, the start-
addresses of the xy-planes are all discrete but aligned in the
device block size. In the sequential layout, the xy-planes are
placed continuously in one sequential memory area. In the
third layout, seq+pgpad, page (4 kB) padding is introduced in

the sequential layout. In the current implementation of the aio
method, we introduced the premise that the domain data size
in x-dimension, nx, must be a multiple of the device block size.
Moreover, we set the space blocking size in the x-dimension,
bx, to be equal to nx for the larger IO granularity, one xy-plane
in a Block array. Otherwise, the IO granularity becomes
smaller, one x-line, for example.

C. The work-share scheme for iBlock arrays in cache

The iBlock arrays in Fig. 4 are virtual arrays that are used
for space blocking in Block array calculations to increase L3
cache hits. The iBlock volume is determined by the size of the
L3 cache and its shape is chosen to increase sequential
memory access and the efficiency of the work-share schemes
by the CPU cores. We explored two schemes, y-loop and z-
loop parallel executions for iBlock with appropriate iBlock
shapes (Fig. 14).

Figure 13. Three memory layouts for Block arrays for block-aligned access

Figure 14. iBlock arrays spatial blocking shape and work share scheme
among threads, for internal loop for L3 cache :

Figure 15. Left: Impact of work-share schemes for iBlock array and
memory layouts for Block arrays

Fig. 15 shows the execution times in all combinations of
three memory layouts and two work-share schemes. The
execution times in the y-loop and the z-loop in the sequential
layout were reduced to 70% and 50% those of the individual
layout for respectively. In sequential layout, the z-loop
parallel execution time was 60% of that of the y-loop parallel.
The page padding was also effective in the z-loop parallel, and
reduced the execution time without padding by 13%.

We also optimized the mmap method with similar
strategies to those used in the blocking sizes and work-share
schemes. Because the memory layout of the Block arrays in
mmap is that of a typical C array, element padding was
introduced to the arrays in the x-dimension instead of the page
padding in the aio method. The optimized aio and mmap
methods show reduced execution times of 55% and 59% those
of the methods without optimization, respectively, as shown
in Fig. 16.

Figure 16. Before and after of optimizations in aio and mmap methods

D. Data-core affinity control for NUMA systems

In a NUMA system with n CPU-sockets, Block arrays are
virtually divided, along the z-dimension, into n sub-blocks
that are calculated in each CPU-socket with local cores, as
shown in Fig. 17. This is carried out by OpenMP parallel
sections, each of which calls sched_setaffinity() for thread-
CPU binding. A sub-block and a CPU-socket binding is
also carried out by mbind() when Block arrays are initially
allocated, or by repeated calls of malloc() and free() at
every Block array calculation. These NUMA-aware tunings
achieve a 55% increase in effective performance (Mflops)
compared to the performance without the tunings.

Figure 17. Data layout and affinity-control for NUMA systems

E. Runtime Auto-tuning mechanism

Using the above strategies, we implemented an automatic
tuning mechanism for temporal and spatial blocking
parameters for each memory layer by extracting underlying
hardware information, such as DRAM/cache size, number of
cores/sockets, and device capacity/block-size. The

mechanism also incorporates NUMA-aware computations
automatically, and uses Portable Hardware Locality (hwloc)
[17] to retrieve the system hardware information. With this
mechanism, users can easily run the stencil programs using
the aio method simply by specifying the domain size (nx, ny,
nz), time steps (Nt), and the path to a flash device, such as
“./stencil7p -n 4094 4096 2048 -t 1000 -d /dev/sdc.”

VI. CONCLUSIONS

In this paper, we investigated the performances in three
different configurations of stencil computation to access a
flash device as main memory extension after elaborated
tuning. We found that aio method gained the highest
performance but it generated restrictions in data layout in user
programs. In contrast, mmap method is easier to use and the
access to a flash is transparent for users, but its performance
is limited about 50%-60% of that of aio method.

We are currently extending this configuration for using
various memories in vertical and horizontal directions, GPU
memory and hard disks in one node and remote nodes over a
cluster system. The future work also includes development of
more general APIs for various kinds of stencil computations.

REFERENCES
[1] Anirudh Badam, "How Persistent Memory Will Change Software

Systems", IEEE Computer , pp45-51, Aug. 2013
[2] Persistent Memory Programming http://pmem.io
[3] Kshitij Sudan, Anirudh Badam, Dvid Nellans, "NAND-Flash: Fast

Storage or Slow Memory?", NVM Workshop 2012
[4] Brian Van Essen, et.al "DI-MMAP—a scalable memory-map runtime

for out-of-core data-intensive applications", Cluster Computing ,
Vol.18, Issu1, pp.15-28, March 2015

[5] SanDisk ioDrive2, http://www.sandisk.com/enterprise/pcie_flash/
fusion-iomemory-iodrive2/

[6] Intel SSD DC P3700, http://www.intel.com/content/www/us/en/solid-
state-drives/intel-ssd-dc-family-for-pcie.html.

[7] Hiroko Midorikawa, Hideyuki Tan and Toshio Endo:"An Evaluation
of the Potential of Flash SSD as Large and Slow Memory for Stencil
Computations", Proc of the 2014 International Conference on High
Performance Computing and Simulation (IEEE HPCS2014), pp.268-
277, July 2014

[8] Improve Linux swap for High speed Flash Storage
http://events.linuxfoundation.org/sites/events/files/lcjpcojp13_shaohu
a.pdf., The Linux Foundation, 2013

[9] OpenNVM, FusionIO, http://opennvm.github.io.
[10] Hiroko Midorikawa, "Using a Flash as Large and Slow Memory for

Stencil Computations". Flash Memory Summit 2014, Aug. 2014
[11] Hiroko.Midorikawa, "Using a Flash SSDs as Main Memory

Extension with a Locality-aware Algorithm". 2015 Non-Volitile
Memories Workshop, in UCSD, March 2015

[12] Linux Storage Stack Diagram kernel 3.17, https://www.thomas-
krenn.com/de/wikiDE/images/2/24/Linux-storage-stack-
diagram_v3.17.pdf

[13] Guanghao Jin, Toshio Endo and Satoshi Matsuoka, “A Parallel
Optimization Method for Stencil Computation on the Domain that is
Bigger than Memory Capacity of GPUs”, IEEE Cluster2013, 2013

[14] M. Wittmann, G. Hager, and G. Wellein, “Multicore-aware parallel
temporal blocking of stencil codes for shared and distributed memory”,
Workshop on Large-Scale Parallel Processing (LSPP10), in
conjunction with IEEE IPDPS2010, 7pages, April 2010

[15] M Bjørling, J Axboe, D Nellans, P Bonnet,"Linux block IO:
introducing multi-queue SSD access on multi-core systems”, Proc.of
the 6th International Systems and Storage Conference (SYSTOR '13)

[16] “Linux Block IO: Introducing Multiqueue SSD Access on Multicore
Systems”, M. Bjorling et.al, 2013, http://bjorling.me/blkmq-slides.pdf

[17] Portable Hardware Locality http://www.open-mpi.org/projects/hwloc/

