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Abstract—This paper investigates the performance of flash 
solid state drives (SSDs) as an extension to main memory with a 
locality-aware algorithm for stencil computations. We propose 
three different configurations, swap, mmap, and aio, for 
accessing the flash media, with data structure blocking 
techniques. Our results indicate that hierarchical blocking 
optimizations for three tiers, flash SSD, DRAM, and cache, 
perform satisfactorily to bridge the DRAM-flash latency divide. 
Using only 32 GiB of DRAM and a flash SSD, with 7-point 
stencil computations for a 512 GiB problem (16 times that of the 
DRAM), 87% of the Mflops execution performance achieved 
with DRAM only was attained. 
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I.  INTRODUCTION  

Scientific computation often requires significant amounts 
of memory to tackle large-scale problems and/or for higher 
resolution data analysis. One of the common solutions used to 
satisfy this requirement is aggregation of distributed 
memories over cluster nodes. This is typically accomplished 
by increasing the amount of DRAM per node and the number 
of nodes in a cluster. However, there is a limit on the extent to 
which DRAM can be increased in main memory, because the 
number of memory slots that can be accommodated on server 
boards is limited. Further, power consumption constraints and 
other resource limitations exist. 

The advent of various kinds of Non-Volatile Memory 
(NVM) ushered in a new era in memory organization and 
memory-related software [1][2]. This new era influences not 
only the traditional memory hierarchy but also the basic idea 
of memory read/write and file IO. In addition, it has the 
potential to significantly change traditional programming 
models and application programs. Of various NVMs, flash 
memory is already widely available to end-users. Its access 
time is not as short as that of DRAM, but it provides much 
greater capacity at a lower cost and consumes less power. 
These points make flash memory one of the promising 
candidates for a DRAM extension to the main memory [3][4].  

Recent PCIe bus-connected flash SSDs [5][6] achieve 
several hundred times faster latency than HDDs, but are still 
approximately one thousand times slower than DRAM. The 
gap between DRAM and flash SSD is much greater than the 
gap between L3 cache and memory, which has only a three to 
10 times difference in latency. Thus, the large latency gap 
between DRAM and flash SSD makes it difficult to use the 
latter as a main memory extension for applications.  

Our earlier work [7] investigated the potential of using 
flash memory as a large and slow memory for stencil 
computations, focusing on the case where the flash memory is 
used as a swap device under the fast swap scheme recently 
introduced into the Linux kernel [8][9]. In that work, a 
locality-aware, hierarchical out-of-core computation 
algorithm with data structure blocking techniques was newly 
employed to bridge the DRAM-flash latency divide for stencil 
computations. It showed that flash memory is viable as large 
and slow memory. 

Multi-level tiling in spatial and temporal spaces, a well-
known technique to optimize data access locality and 
parallelism, has been studied in the literature, but the 
algorithms designed for cache-DRAM tiers cannot be used 
directly for DRAM-Flash tiers because they introduce 
different situations under the existing spatial/temporal 
blocking optimizations. One major difference is the access 
latency gap between DRAM-Flash tiers, which is much larger 
than that between cache-DRAM tiers. Another difference is 
actual access granularity and access mechanism. The typical 
flash SSD is accessed in blocks, with typical size 512 B or 4 
KB, as a block device, whereas cache and DRAM are 
accessed in finer grained cache line and word/byte as memory. 
Moreover, there are several access paths from an application 
to a Flash SSD as a block device in OS kernel layers [12], as 
shown in Fig. 1. Each path exhibits a different performance 
depending on the version of the OS kernel (Fig. 2), which has 
been intensively studied and advances made by incorporating 
new features for high-speed NVMs. In addition to the swap 
method, we propose two additional configurations, mmap and 
aio, for accessing flash media [10] [11]. The aio and mmap 
methods achieve more efficient access to flash than the swap 
method does, but there remains the possibility of achieving 
even better performance through more elaborate tuning.  

In this paper, we compare the three methods in terms of 
performance with elaborate tuning in blocking data memory 
layout, the work-share scheme for multiple cores, and the 
affinity control for Non-Uniform Memory architecture 
(NUMA) systems. These tunings double the performance of 
the mmap and aio methods. As a result, using only 32 GiB of 
DRAM and a flash SSD, on 7-point stencil computations for 
a 512 GiB problem (16 times larger in size than the DRAM), 
87% of the Mflops execution performance achieved using 
only DRAM was attained. Further, in a NUMA system, the 
same computation for a 1 TiB problem using only 64 GiB of 
DRAM and flash, 80% of the Mflops performance achieved 
using sufficient DRAM was attained. Through our tuning 
experience, we developed a runtime auto-tuning mechanism 
to select appropriate parameters in spatial/temporal block 



sizes, a work-share scheme for multi-core, and affinity control 
for NUMA, by retrieving information on the underlying 
system hardware. This alleviates the burden on users of 
choosing parameters for the individual systems they utilize. 

 

 
Figure 1.  Multiple paths to block devices from applications 

 
Figure 2.  mmap vs. aio in IO bandwidth to flash SSD (ioDrive2) by 16 

threads in kernel 2.6.32 and 3.13.0 

II. LOCALITY-AWARE STENCIL ALGORITHM AND THREE 

METHODS FOR USING FLASH IN THE MEMORY HIERARCHY 

Stencil computation is one of the most popular and 
important types of processing in various scientific and 
engineering simulations. It performs iterative calculations on 
a limited dataset, typically the nearest neighbor data. It sweeps 
all the data—e.g., three-dimensional (3D) physical data 
space—and updates them at each time step. In this paper, 7-
point and 19-point stencil computations using the six and the 
18 nearest neighbor points for a 3D data domain individually 
are used in general discussion for simplicity. 

A. Basic temporal blocking stencil algorithm 

A temporal blocking algorithm extracts not only spatial 
locality but also temporal locality for iterative applications. 
Temporal blocking optimizations have predominantly been 
applied to cache and DRAM tiers, the host memory, graphics 
processing unit (GPU) memory [13] tiers, and local and 
remote nodes in a cluster [14], in order to expedite data access 
by exploiting temporal locality. A typical temporal blocking 
algorithm for the 3D data domain is shown in Fig. 3. 

B. Layered Blocking and three methods for accessing flash 

We introduce the blocking techniques on three-layered 
data structures in Fig. 4, corresponding to Buffer arrays in 
flash memory, Block arrays in DRAM, and virtual iBlock 
arrays in L3-cache, to extract access locality [7]. Temporal 
blocking is applied to the flash and DRAM tiers and spatial 
blocking is applied to the DRAM and cache tiers. 

 
 

Figure 3.  one-level temporal blocking algorithm: pseudo codes for a 3D 
domain. 

 
 

Figure 4.  Three-layerd data structure for locality extraction 



We propose three options for using a flash SSD as a main 
memory extension for application programs [10][11]: (1) 
swap method, (2) mmap method, and (3) aio method. In the 
swap method, Block arrays in the middle layer and Buffer 
arrays in the bottom layer in Fig. 4 are allocated by  the 
malloc() function in applications and a flash SSD is used as a 
swap device under the virtual memory system of the OS. To 
prevent the Block arrays being swapped out, they are locked 
onto main memory by means of the mlock() function. In the 
mmap method, the Block arrays are allocated by malloc() and 
the Buffer arrays are represented as files that are memory 
mapped by the mmap() function in applications, and a flash 
SSD is used as a file system (e.g., ext4). Its access path 
corresponds to the arrow (1) in Fig. 2. Both methods are 
virtually transparent to applications.  

In the aio method, Linux kernel asynchronous input/output 
library functions (io_submit and io_getevents) are used in the 
applications. The Block arrays are allocated by malloc() and 
the Buffer arrays are represented as consecutive blocks on a 
flash block device. It requires modification of application 
programs from memory-semantic reads/writes to explicit 
inputs/outputs to a flash SSD. In our experiment, a flash SSD 
is used as a block device and opened with O_DIRECT, 
corresponding to the arrow (2) in Fig. 2. It eliminates file- 

Figure 5.  CPU Utilizations on three methods for 7-point stencil 
computation; 64GiB-problem execution on 32GiB-DRAM and a Flash 

Figure 6.  CPU Utilizations on three methods for 7-point stencil 
computation; 64GiB-problem execution on 32GiB-DRAM and a Flash 

TABLE I.  EXPERIMENTAL ENVIRONMENT  

 
 

system-layer overhead and kernel-managed buffering, page 
cache. Instead, Block arrays in Fig. 4 are used as user page 
buffer and are fully controlled by applications. The recent 
improvement of block storage stacks in Linux, specifically, 
multiple IO request queues for multi-core [15], gives higher 
performance to asynchronous IO by multiple threads as shown 
in Fig. 2, but it requires block-size-aligned data access. As a 
result, the aio method causes complexities and restrictions in 
data layout in application programs. 

III. PERFORMANCE IMPACT OF TEMPORAL BLOCKING 

ALGORITHM IN THE THREE METHODS 

In this section, we explore the performance of 
the three configurations, swap, mmap, and aio, 
using a flash SSD for stencil computations as a 
main memory extension. The experimental setting 
is outlined in the UMA column of Table I.  

The problem used in this preliminary 
evaluation was a 7-point stencil for 3D-domain 
data, 64 GiB problem, domain size (nx, ny, nz) 
2046 × 2048 × 1024 and time step iteration, Nt, 256. 
For the temporal blocking algorithm, the spatial 
blocking size (bx, by, bz) was 2046 × 512 × 512 
and the temporal blocking size, bt, was 128. This 
corresponds to two iterations of the eight block 
array calculations on 128 local iterations. The 
actual DRAM size used in the program was 82.2 
GiB, including bt ghost areas in the block arrays, 
 as shown in Fig. 4. The performance of the three 
methods using limited DRAM (32 GiB) and 
sufficient DRAM (128 GiB) was then evaluated. 

Figs. 5 and 6 show CPU utilization and IO 
bandwidth to flash SSD profiles for each method 
during their execution. The 16 sections in which 
user CPU utilization is 100% correspond to 8-
block computations in DRAM iterated twice. Each 
gap between these block computation parts 
corresponds to Input/Output from/to flash memory. 
Among the three methods, it can be seen that the 
aio method achieves the most efficient IO to flash 
memory and reduces its total execution time. Its 
peak IO bandwidth achieves almost the maximum 
value specified in the flash device, ioDrive2. This 
is as a result of the highly parallel asynchronous IO 
by multi-core with deep IO queue depth for only 

necessary data/block, eliminating the unnecessary page IO 
seen in swap and mmap methods. 



Fig. 7 shows the relative execution times for the problems 
following elaborate tuning (which will be described in section 
V). With the aio method, the computation time for the 64 GiB 
problem using 32 GiB of DRAM and flash is only 1.5 times 
greater (1120 s) than that of the normal execution (740 s) 
using sufficient DRAM, 128 GiB. Without the temporal 
blocking algorithm, its computation time using 32 GiB 
DRAM is 65.2 times greater (48,232 s) than the normal 
execution (740 s), as shown in Fig. 7. Temporal blocking has 
a significant impact on the performance of the stencil 
computation using flash memory. The aio method with 
temporal blocking is most effective for execution under 
limited DRAM.  

Fig. 8 shows the relative effective Mflops for problems of 
various sizes using 32 GiB with the aio method. In the 512 
GiB problem, execution using only 32 GiB of DRAM 
achieves performance that is 87% that of normal execution 
using sufficient DRAM in the case of the 16-GiB problem 
(leftmost column in Fig. 8). 

 
Figure 7.  Relative times for various methods for 7-point stencil comp. 

 

Figure 8.  Performances in various-size problems on fixed physical 
memory (32GiB)  

IV. PERFORMANCE OF AIO AND MMAP METHODS IN 

NUMA SYSTEMS 

We introduced NUMA-aware computing in the algorithm 
for multiple-socket NUMA systems, as well as optimization 
for single-socket systems, such as the memory layout of the 
Block arrays and a work-share scheme with multi-core. 

 In this section, we compare the aio and mmap methods 
for problems of various sizes using 7-point and 19-point 

stencil computations in the two-socket NUMA system 
outlined in Table I. Fig. 9  and 10 show the execution times 
and the effective Mflops in the aio and mmap methods, 
respectively. The execution time of the aio method is 50–60% 
that of the mmap method.  Moreover, while under execution 
using the mmap method, the 19-point 1 TiB problem is 
terminated by an out of memory (OOM) killer in the OS, 
because of lack of available memory in the large-size problem 
file mmap. In contrast, the execution of the aio method 
exhibits stable behavior.  

 
Figure 9.  Execution times of various-size problems in aio and mmap 

methods 

 

Figure 10.  Effective MFlops of various-size problems in aio and mmap 
methods 

 
Figure 11.  Relative performances in various-size problems on fixed 

physical memory (64GiB) in a NUMA system 

Fig. 11 shows the relative Mflops in the aio method based 
on the performance of the execution using 64 GiB of physical 
memory. The 1 TiB problem execution exhibits 80% of the 
performance of the 64 GiB problem in 7-point stencil 
computation. Fig. 12 shows the comparison of the aio and 



mmap methods in Mflops. The aio method achieves better 
performance than that of the mmap method even in the 32 GiB 
problems using sufficient DRAM. 

 
Figure 12.  Effective MFlops on fixed-size memory (64GiB) in a NUMA 

system on aio and mmap methods 

V. OPTIMIZATIONS IN THE IMPLEMENTATION 

This section describes several performance tuning 
strategies used in the implementation of the algorithm for 
flash SSDs in section III and IV. The same 64 GiB-problem 
in section III was used for the evaluation on UMA systems.  

A. Blocking sizes for DRAM-flash SSD tiers  

The results of our previous evaluation [7] indicated that, 
in the temporal blocking for DRAM-flash tiers, larger 
spatial/temporal blocking sizes result in better performance, 
as long as the Block arrays fit inside the main memory 
(DRAM) capacity. The fact that the access latency of flash 
memory is much greater than CPU calculation cycles makes 
it very different from the case using a temporal blocking 
algorithm applied to cache-DRAM tiers [7]. The latter case 
usually has the best tradeoff point between increasing 
redundant computation overhead and speedup by exploring 
data access locality when choosing temporal blocking sizes. 
In addition to choosing a larger volume for the blocking sizes 
combination, bt and (bx, by, bz), it is also important to choose 
the shape of the array to increase sequential access in memory. 
For example, for the same Block array volume, a larger bx is 
better than a larger bz.  

B. Memory layout of the Block arrays in the aio method  

Asynchronous IO parameters, such as start-address, offset, 
and size, must be aligned in device block sizes—4 KB in our 
case. In the aio method, the Block arrays in Fig. 4 are 
implemented with a z-dimension pointer-array and multiple 
xy-planes pointed to by a pointer in the z-dimension array. 
This is in contrast to the layout in the mmap and swap methods, 
where they are implemented as a typical sequential C memory 
array.  The start-address and the size of each xy-plane in the 
aio method are aligned in device block size. Each xy-plane is 
a unit comprising asynchronous IOs by multiple threads in 
parallel.  

The performance of the three memory layouts is compared 
in Fig. 12. In the individual layout, each xy-plane is allocated 
with the posix_memaligned() function. Thus, the start-
addresses of the xy-planes are all discrete but aligned in the 
device block size. In the sequential layout, the xy-planes are 
placed continuously in one sequential memory area. In the 
third layout, seq+pgpad, page (4 kB) padding is introduced in 

the sequential layout. In the current implementation of the aio 
method, we introduced the premise that the domain data size 
in x-dimension, nx, must be a multiple of the device block size. 
Moreover, we set the space blocking size in the x-dimension, 
bx, to be equal to nx for the larger IO granularity, one xy-plane 
in a Block array. Otherwise, the IO granularity becomes 
smaller, one x-line, for example. 

C. The work-share scheme for iBlock arrays in cache 

The iBlock arrays in Fig. 4 are virtual arrays that are used 
for space blocking in Block array calculations to increase L3 
cache hits. The iBlock volume is determined by the size of the 
L3 cache and its shape is chosen to increase sequential 
memory access and the efficiency of the work-share schemes 
by the CPU cores. We explored two schemes, y-loop and z- 
loop parallel executions for iBlock with appropriate iBlock 
shapes (Fig. 14).  
 

 
Figure 13.  Three memory layouts for Block arrays for block-aligned access 

 

Figure 14.  iBlock arrays spatial blocking shape and work share scheme 
among threads, for internal loop for L3 cache : 

 

Figure 15.  Left: Impact of work-share schemes for iBlock array and 
memory layouts for Block arrays 



Fig. 15 shows the execution times in all combinations of 
three memory layouts and two work-share schemes. The 
execution times in the y-loop and the z-loop in the sequential 
layout were reduced to 70% and 50% those of the individual 
layout for respectively. In sequential layout, the z-loop 
parallel execution time was 60% of that of the y-loop parallel. 
The page padding was also effective in the z-loop parallel, and 
reduced the execution time without padding by 13%. 

We also optimized the mmap method with similar 
strategies to those used in the blocking sizes and work-share 
schemes. Because the memory layout of the Block arrays in 
mmap is that of a typical C array, element padding was 
introduced to the arrays in the x-dimension instead of the page 
padding in the aio method. The optimized aio and mmap 
methods show reduced execution times of 55% and 59% those 
of the methods without optimization, respectively, as shown 
in Fig. 16.   

 
Figure 16.  Before and after of optimizations in aio and mmap methods 

D. Data-core affinity control for NUMA systems 

In a NUMA system with n CPU-sockets, Block arrays are 
virtually divided, along the z-dimension, into n sub-blocks 
that are calculated in each CPU-socket with local cores, as 
shown in Fig. 17. This is carried out by OpenMP parallel 
sections, each of which calls sched_setaffinity() for thread-
CPU binding. A sub-block and a CPU-socket binding is 
also carried out by mbind() when Block arrays are initially 
allocated, or by repeated calls of malloc() and free() at  
every Block array calculation. These NUMA-aware tunings 
achieve a 55% increase in effective performance (Mflops) 
compared to the performance without the tunings. 

 
Figure 17.  Data layout and affinity-control for NUMA systems 

E. Runtime Auto-tuning mechanism 

Using the above strategies, we implemented an automatic 
tuning mechanism for temporal and spatial blocking 
parameters for each memory layer by extracting underlying 
hardware information, such as DRAM/cache size, number of 
cores/sockets, and device capacity/block-size. The 

mechanism also incorporates NUMA-aware computations 
automatically, and uses Portable Hardware Locality (hwloc) 
[17] to retrieve the system hardware information. With this 
mechanism, users can easily run the stencil programs using 
the aio method simply by specifying the domain size (nx, ny, 
nz), time steps (Nt), and the path to a flash device, such as 
“./stencil7p -n 4094 4096 2048 -t 1000 -d /dev/sdc.” 

VI. CONCLUSIONS 

In this paper, we investigated the performances in three 
different configurations of stencil computation to access a 
flash device as main memory extension after elaborated 
tuning. We found that aio method gained the highest 
performance but it generated restrictions in data layout in user 
programs. In contrast, mmap method is easier to use and the 
access to a flash is transparent for users, but its performance 
is limited about 50%-60% of that of aio method. 

We are currently extending this configuration for using 
various memories in vertical and horizontal directions, GPU 
memory and hard disks in one node and remote nodes over a 
cluster system. The future work also includes development of 
more general APIs for various kinds of stencil computations. 
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