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Three methods to access to Flash SSDs
• swap method  ( swap system): swap device    transparent for app.  slow.  swapd overhead
• mmap method  (file memory map): ext4 file system  easy to use.  depends on page cache space, Out of mem killer
• aio method  (asynchronous file io) : block device for direct  I/O   fast,  requires block-size-aligned access

Locality-aware algorithm: 
temporal and spatial blocking for three-memory layers

Multiple access paths to a SSD device: 
mmap and  direct aio

CPU Utilizations and    I/O Bandwidths on three methods: swap, mmap, and aio
Performance on UMA-Systems

Out-of-core Stencil Algorithm using Flash SSDs

Performance on NUMA-Systems

7-point stencil computation; 
64GiB-problem using 32GiB-DRAM & a Flash

Optimization and parameter tuning for higher performance
Three memory layouts for Block iBlock shape & work-share

Relative Execution Times of  three methods

Tuning temporal blocking parameters 
for higher performance

parameter select policy
1. fit block/iblock volume in DRAM/L3 cache size
2. select block  shape and a  memory layout 

with  device-block-size  aligned fashion
to increase sequential  access
to reduce memory access conflicts by  pixel/page padding  

for block layout
to increase work share efficiency for iBlock shape 

according to work share scheme
3. select work share scheme to increase core independent 

and parallel calculation

• Block shape
• BLock memory layout

• Internal block shape
• Thread work share 

scheme 

1. User command parameters
domain size(nx,ny,nz), Time step(nt),  Flash device path
% ./stencil7p -n 4094 4096 2048 -t 1000 -d /dev/sdc
----- autotune start -----
(bx,by,bz), bt = (4094,1024,512), 125
(ix,iy,iz) = (4094,1,40) : 20961280 B (19.99 MiB)
----- autotune end -----

:

2.  Get hardware information 
device capacity, device block size, DRAM size, L3

cache size, # of Cores, # of CPU sockets
3.  Calculate optimal blocking sizes by adjusting to 
underlying hardware 

• Efficient spatial block size and shape,  temporal 
block size (optimal  bx,by,bz, bt for Blocks on 
DRAM)

• Efficient spatial inner block shape and size (optimal  
ix,iy,iz for inner blocks on L3 cache )

4. Numa-aware computing
• Blocks are divided into sub-block areas according 

to  # of CPU sockets
• memory-bind & cpu-bind  between each sub-

block to each local socket 
• locality-aware sub-block computation on each 

CPU socket  using local cores

Runtime Auto Tuning 

Performance of various-size Problems 
on fixed-size Physical memory

Z-dimension 
parallel with page 

padding 

Only 20% 
degradation for 
1TiB-problem using
64GiB memory

aio gains much 
better perf.  than 

mmap

Optimizations 
reduce exe. 
times on aio
and mmap
methods HALF !

aio vs. mmap in access bandwidth to a flash SSD

aio vs. mmap in kernel 3.13.0 

Micro benchmarks
(128GiB data/64GiB mem)
• Kernel version
• I/O queue depth (1 or 64K/thread)
• Access mode ( seq,  random)
• File system vs. Raw device
• I/O size (block(4KiB),  byte)

In new kernel, aio gains 2.44-time 
(ave.) higher bandwidth than mmap
both in seq. and random access 

% ./stencil7p -n 4094 4096 2048 -t 1000 -d /dev/sdc
----- autotune start -----
(bx,by,bz), bt = (4094,1024,512), 125
(ix,iy,iz) = (4094,1,40) : 20961280 B (19.99 MiB)
----- autotune end -----

:

13%  degradation for 512GiB-problem  
using 32GiB memory

The auto tuning releases users from 
the burden of choosing  parameters  
for individual systems they utilize.
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