
CCGrid2015 The 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, May 4-7, 2015, Shenzhen

Locality-Aware Stencil Computations using Flash SSDs as Main Memory Extension
Hiroko Midorikawa, Hideyuki Tan, JST CREST & Seikei University, Tokyo Japan

midori@st.seikei.ac.jp http://www.ci.seikei.ac.jp/midori/paper

Three methods to access to Flash SSDs
• swap method (swap system): swap device  transparent for app. slow. swapd overhead
• mmap method (file memory map): ext4 file system  easy to use. depends on page cache space, Out of mem killer
• aio method (asynchronous file io) : block device for direct I/O  fast, requires block-size-aligned access

Locality-aware algorithm:
temporal and spatial blocking for three-memory layers

Multiple access paths to a SSD device:
mmap and direct aio

CPU Utilizations and I/O Bandwidths on three methods: swap, mmap, and aio
Performance on UMA-Systems

Out-of-core Stencil Algorithm using Flash SSDs

Performance on NUMA-Systems

7-point stencil computation;
64GiB-problem using 32GiB-DRAM & a Flash

Optimization and parameter tuning for higher performance
Three memory layouts for Block iBlock shape & work-share

Relative Execution Times of three methods

Tuning temporal blocking parameters
for higher performance

parameter select policy
1. fit block/iblock volume in DRAM/L3 cache size
2. select block shape and a memory layout

with device-block-size aligned fashion
to increase sequential access
to reduce memory access conflicts by pixel/page padding

for block layout
to increase work share efficiency for iBlock shape

according to work share scheme
3. select work share scheme to increase core independent

and parallel calculation

• Block shape
• BLock memory layout

• Internal block shape
• Thread work share

scheme

1. User command parameters
domain size(nx,ny,nz), Time step(nt), Flash device path
% ./stencil7p -n 4094 4096 2048 -t 1000 -d /dev/sdc
----- autotune start -----
(bx,by,bz), bt = (4094,1024,512), 125
(ix,iy,iz) = (4094,1,40) : 20961280 B (19.99 MiB)
----- autotune end -----

:

2. Get hardware information
device capacity, device block size, DRAM size, L3

cache size, # of Cores, # of CPU sockets
3. Calculate optimal blocking sizes by adjusting to
underlying hardware

• Efficient spatial block size and shape, temporal
block size (optimal bx,by,bz, bt for Blocks on
DRAM)

• Efficient spatial inner block shape and size (optimal
ix,iy,iz for inner blocks on L3 cache)

4. Numa-aware computing
• Blocks are divided into sub-block areas according

to # of CPU sockets
• memory-bind & cpu-bind between each sub-

block to each local socket
• locality-aware sub-block computation on each

CPU socket using local cores

Runtime Auto Tuning

Performance of various-size Problems
on fixed-size Physical memory

Z-dimension
parallel with page

padding

Only 20%
degradation for
1TiB-problem using
64GiB memory

aio gains much
better perf. than

mmap

Optimizations
reduce exe.
times on aio
and mmap
methods HALF !

aio vs. mmap in access bandwidth to a flash SSD

aio vs. mmap in kernel 3.13.0

Micro benchmarks
(128GiB data/64GiB mem)
• Kernel version
• I/O queue depth (1 or 64K/thread)
• Access mode (seq, random)
• File system vs. Raw device
• I/O size (block(4KiB), byte)

In new kernel, aio gains 2.44-time
(ave.) higher bandwidth than mmap
both in seq. and random access

% ./stencil7p -n 4094 4096 2048 -t 1000 -d /dev/sdc
----- autotune start -----
(bx,by,bz), bt = (4094,1024,512), 125
(ix,iy,iz) = (4094,1,40) : 20961280 B (19.99 MiB)
----- autotune end -----

:

13% degradation for 512GiB-problem
using 32GiB memory

The auto tuning releases users from
the burden of choosing parameters
for individual systems they utilize.

	スライド番号 1

