
In all the cases, the proposed protocol r77 achieved a better performance by
using two system threads that are separately responsible for page swap and
user thread request management and communicate to the memory servers
independently

Result	Summary

Comparison	between	revised	r77 protocol	and	base	r3 protocol
• Micro	Benchmark:		Exec.	time	43%	- 25%	reduction
• Stream	Benchmark:	Remote	Memory	bandwidth	61%	increases
• Stencil	Computing:	Exec.	time	of	512GIB-problem	(Local	memory	ratio	25%)		19%	reduction
• Matrix	Multiplication:	Exec.	time	of	24GiB-Problem	(Local	memory	ratio	25%)	12%	reduction
• 3D-FFT:	Exec.	time	of	1TiB-Problem	(Local	memory	ratio	12.5%)	12%	reduction

• Fixed	Problem	Size	:	(32	K	x	32	K	matrix	:	24	GIB)
• Available	Local	memory	size	is	reduced		from	120	GiB to	3	GiB.
• Local	node	(128GIB.	24	cores,	16	threads)	+	

Matrix	Multiplication

Execution	using	
only		

local	memory

88%	reduction	
by	revised	r77

protocol

Only	24%	time	
increase	compared	to	
normal	execution

CLUSTER	2017			IEEE	International	Conference	on	Cluster	Computing,			September	5th	- 8th,	2017,	Hawaii,	USA.	

Efficient Swap Protocol for Remote Memory Paging in Out-of-Core Multi-Thread Applications
Hiroko	Midorikawa,	Kenji	Kitagawa,	Hikari Ohura,	JST	CREST	&		Seikei	University,	Tokyo	Japan

midori@st.seikei.ac.jp					http://www.ci.seikei.ac.jp/midori/paper

DLM	(Distributed	Large	Memory)	[1][2]
for	Out-Of-Core	Multi-thread	Program	Executions

A	user-level	remote	memory	paging	system,	DLM	(Distributed	Large	Memory),	offers	virtual	large	memory	using	a	cluster	of	distributed	
node	memories	[1][2].	It	is	highly	portable	to	various	clusters	and	is	an	easy-to-use	remote	memory	for	people	without	any	knowledge	of	MPI.	It	
was	designed	for	users	who	need	to	solve	large-size	problems	that	require	the	processing	of	large	amounts	of	data	beyond	the	capacity	of	local	
memories,	using	existing	algorithms	and	programs	originally	designed	for	shared-memory	models.	They	prefer	and	accept	the	extra	execution	
time	caused	by	partially	using	remote	memory	instead	of	the	local	memory,	because	converting	existing	complex	algorithms	to	parallel	MPI	
programs	is	not	an	easy	task	and	requires	substantial	costs.	The	DLM	supports	multi-thread	programs	and	libraries	written	in	OpenMP and	
pthread[1].

Abstract

DLM	System	:	
• Virtually	provides	a	single	large	memory	using	distributed	memories	in	a	cluster	for	

multi-thread	programs	designed	for	shared-memory-models,	such	as	OpenMP and	
pthread.

• A	Transparent	system	to	user	applications	:	The	segv-signal-handler	invoked	by	each	
thread	in	an	application	fetches	a	remote	page	implicitly.

• Little	modification	for	existing	programs
• No	need	of	MPI		programming	knowledge	for	using	remote	memories

The	Programming	interface	for	DLM

#define	ENUM	((unsigned	long)	(1L<<34)) //16G	Elements
int main()
{
dlm_startup(&argc,	&argv);		//	Initiate	the	DLM System		
//	128	GiB array	allocation
array	=	(unsigned	long	*) dlm_alloc (sizeof(unsigned	long)	*	

ENUM);	
//	Initialization,	array	parallel	write
#pragma omp parallel for
for	(i	=	0;	i	<	ENUM;	i++)		array[i]	=	i;

//	Array		parallel	read	per	1MB	(DLM page	size)	
#pragma	omp parallel	for
for	(i =	0;		i <	ENUM;	i+=(1L<<17))

if	(array[i]	!=	i)		return	1;
dlm_shutdown();				//	Finalize	the	DLM System		
}

DLM	Multi-thread	Program	(mallocè dlm_alloc)

Allocate	a	data	area	
which	can	expand	to	
remote	memories

• Convert	malloc to	dlm_alloc for	dynamic	allocations

Fig.2 Difficulties	in	page	swapping	by	multiple	threads

Data	inconsistency	is	generated	when	page	fetch	and	data	
access	are	occurred	simultaneously.

• Temporal	suspension	of	all	user	threads	in	a	program	during	
copying	a	remote	page	to	the	user	address	space	is	employed.	

pthread_kill (pthread_t thread,	int sig);
• pthread_create() is	hooked	by	the	DLM	system	to	register	thread	

IDs	of	user	threads	which	are	generated	and	terminated	
dynamically	in	program	execution.

#define	MAX	1000
dlm int a[MAX][MAX];
int main	(int argc,	char	*argv[])
{
int i,	j;
for	(i =	0;	i <	MAX;	i++)
for	(j	=	0;	j	<	MAX;	j++)									a[i][j]	=	i*j;
for	(i =	0;	i <	MAX;	i++)
for	(j	=	0;	j	<	MAX;	j++)			printf("%d",	a[i][j]);
return	0;
}

int (*dlm_a)[MAX];
int main (int argc, char *argv[])
{
int i, j;
dlm_startup(&argc,&argv);
dlm_a = (int (*) [MAX]) dlm_alloc (sizeof(int) *MAX*MAX);
for (i = 0; i < MAX; i++)
for (j = 0; j < MAX; j++) dlm_a[i][j] = i*j;

for (i = 0; i < MAX; i++)
for (j = 0; j < MAX; j++) printf("%d",dlm_a[i][j]);

dlm_shutdown();
return 0;

}

Converted	
by	dlmc translator

• Use	the	dlmc translator	for	array-data	[6]

A	new	page	swap	protocol	is	proposed	for	user-level	remote	memory	paging	systems	to	accelerate	the	performance	of	out-of-core	processing	with	multi-thread	user	programs	and	libraries	written	in	OpenMP and	pthread.	
The	original	swap	protocol	has	a	bottleneck	in	efficient	page	swapping,	which	is	requested	by	multiple	threads	in	a	user	program,	because	all	the	MPI communications	to	the	memory	servers	and	page	swap	managements	are	
allocated	to	one	system	thread.	However,	this	protocol	has	a	benefit	that	it	is	widely	available	anywhere	even	if	MPI thread-support-level	is	not	so	high.	The	new	protocol	uses	two	independent	system	threads:	one	for	page	
swapping,	and	the	other	for	managing	user	thread	requests.	Although	it	requires	the	highest	MPI thread-support-level	(multiple),	which	is	usually	considered	to	degrade	the	MPI communication	performance	compared	to	than	
in	lower	MPI thread-support-level,	the	new	protocol	achieves	higher	performance	than	the	original	protocol	in	micro	benchmark,	Stream	benchmark,	matrix	multiplication,	stencil	computation,	and	3-Dimentional FFT.

Original	page	swap	implementation
(base:	r3-protocol)	

Centralized	control	system	by	com-thread
• No	mutual	exclusions for	accessing	the	DLM internal	system	data.
• Widely	available anywhere,	MPI thread-support-level	is	low.	(FUNNELED,	

SERIALIZED)
• Bottleneck in	efficient	page	swapping.		All	requests	from	user	threads	

are	managed	by	a	single	com-thread,	one	by	one.		

Revised	page	swap	implementation
(revised	1:	r58-protocol)

Introducing	receiver	thread	to	the	centralized	control	system	(r3-protocol)
• No	mutual	exclusions for	accessing	the	DLM internal	system	data.
• Concurrent	MPI communications	require	MPI thread-support-level	MULTIPLE.
• Rec-thread	dedicates	receiving	swap-in	pages	in	receiver-buffers.
• Com-thread manages	sending	page-requests,	page-applying,	and	sending	swap-

out	pages.

Revised	page	swap	implementation
(revised	2:	r77-protocol)

Two	system	threads	manage	their	works	independently,	without	page-buffers.
• Mutual	exclusions are	required	to	access	the	DLM internal	system	data.
• Two	MPI Communicating	threads		requires	MPI thread-support-level	MULTIPLE.
• Two	system	thread	run	independently.		Page-buffers	are	removed.

Rec-thread	manages	all	page	swapping	(receive	,	apply,	send)	.	
Com-thread manages	only	user	requests.

Multiple	threads	
simultaneously

generate	very	heavy	
page	requests

Fig.	3		The	program	using	DLM library
Micro	Benchmark	for	remote	memory	read	and	write Fig.	4	DLMC Translation

Fig.	1		DLM

7-point	Stencil	computation	
with	Temporal	blocking	[4] • Stencil	Problem					Data	Size	:	64GIB〜512GIB,		256	time	steps

• Local	node(128GIB.	20	cores)		+	four	memory	server	nodes	(128GiB x	4),	16-threads

Two	Block	
Arrays		64GIB

Two	buffer	
Arrays		512GIB

45GB/s	
DRAM	Bandwidth

(revised	2:	r77-protocol)

Log-scale

DRAM
（DDR3 8GiB x	8)

STREAM	Benchmark	[3]

(base:	r3-protocol) (revised	1:	r58-protocol)

1567	
MB/s

976
MB/s

Remote	Memory	Bandwidth)

501
MB/s

61	%	
up

• Problem	Size	:	48GIB〜512GIB
• Local	node(64GIB.	16	cores)		+	four	memory	server	nodes	(128GiB x	4)

Performance	evaluations	:		base	protocol	vs.	revised	protocols	

Performance

Time
Revised	r77
achieves

19%	higher	
performance
compare	to	r3
performance	

512GiB-Problem:		Local	memory	size	X	４
Only	23%	degradation	compared	to	the	
performance	using	only	local	memory

Larger	size	problems	achieve
higher	performance	advantages	

in	revised	r77 protocol

3D	Fourier	Transform		using	fftw library	[5]	 Server	Name Sandy	Bridge	Server
crest2,3,4

Haswell	Server
crest5,6,7,8

Broadwell	Server
	crest9,10

Network

Node	CPU
Xeon	E5-2687W	(3.10GHz)

	2	CPU	x	8	Core

Xeon	E5-2687W	v3
(3.10GHz)

2	CPU	x	10	Core

Xeon	E5-2687W	v4
(3.00GHz)

2	CPU	x	12	Core

Node	Memory
DDR3-1600,	crest4:		8GiBx8	(64	GiB)
crest3:	16GiB	x8	or	x12	(128	/196	GiB),

crest2:	8GiB	x	16	(128	GiB)

DDR4-2133	16GiB	x	8
(128	GiB)

DDR4-2400	16GiB	x	8
(128	GiB)

L1	cache	 32	KiB 32	KiB 32	KiB
L2	cache 256	KiB 256	KiB 256	KiB
L3	cache	 20	MiB 25	MiB 30	MiB

OS CentOS	7.1.1503	(x86_64),	kernel	3.19.5 CentOS	7.1.1503
(x86_64),	kernel	3.19.5

CentOS	7.2	(x86_64),
kernel	3.19.5

Compiler gcc	version	4.8.3		-O3 gcc	version	4.8.3	-O3 gcc	version	4.8.3	-O3
MPI

Infiniband	single	FDRx4	(56Gbps)

MVAPICH2	2.0.1_mrail_OFED2.4-1.0.4

Experimental	Environment

• Problem	Size	:	2GIB (Local	memory	800MB,	Remote	Memory	1.2GiB),	Using	one	memory	server

(base:	r3-protocol) (revised	2:	r77-protocol)(revised	1:	r58-protocol)

• Two	3D- arrays,	src and	dst,		allocated	with	dlm_alloc are	passed	as	to	3dfftw()	function	 arguments	.
• Local	node(128GIB.	16	cores)		+	7	memory	server	nodes	(63GiB - 128GiB),	14-threads	fftw library	(fftw3.3.6-pl1,	libfftw3_omp.a)	

Exec.	time	is	reduced	to	
73%	of	the	time	using	r3

protocol
by	revised	r77 protocol	

for	1TiB problem.	

(revised	2:	r77-protocol)

(base:	r3-protocol)			vs.	(revised	2:	r77-protocol)
(14	threads)

Execution	
using	only		

local	memory

Execution	
using	only		

local	memory

88%	of	the	data	are	
remote	memory

(revised	2:	r77-protocol)

REFERENCES

[1]	H.	Midorikawa,	Y,	Suzuki,	M.Iwaida:	"User-level	
Remote	Memory	Paging	for	Multithreaded	Applications",	
IEEE/ACM	International	Symp.	on	Cluster,	Cloud	and	the	
Grid	Computing	CCGrid2013,	pp.196-197,	2013
[2]	H.	Midorikawa,	K.Saito,	M.Sato,	T.Boku:	"Using	a	
Cluster	as	a	Memory	Resource:	A	Fast	and	Large	Virtual	
Memory	on	MPI",	IEEE	International	Conf.	of	Cluster	
Computing,	Cluster	2009,		pp.1-10,	2009
[3]Stream	Benchmark	
https://www.cs.virginia.edu/stream/
[4]	H.	Midorikawa,	H.Tan,	T.Endo,”An Evaluation	of	the	
Potential	of	Flash	SSD	as	Large	and	Slow	Memory	for	
Stencil	Computations”,	IEEE	The	12th	International	Conf.	
on	High	Performance	Computing	&	Simulation
[5]	fftw library		http://www.fftw.org/
[6]	S.	Yoshimura,	H.Midorikawa;	"A	C	Compiler	for	Large	
Data	Sequential	Processing	using	Remote	Memory",	proc.	
of	IEEE	Pacific	Rim	Conference	on	Communications,	
Computers	and	Signal	Processing,	pp.198-202	,	2011-8	
(DOI:	10.1109/PACRIM.2011.6032892)

References

Micro	Benchmark	(Fig.3.)

Micro	Benchmark	Time	(Average	of	three	trials)
r77-protocol	vs.	r3-protocol	(Various	MPI	thread	support	Level)

Micro	Benchmark	(Fig.3.)

Time		base(r3)	protocol		vs.	revised	(r58 and	r77)	protocols

Revised	r77 protocol		
reduces		the	exec.	
time	to	57%〜75%	
of	those	of		base	r3

protocol

Revised	r58 protocol
increases	the	exe.	time

Time	breakdown	for	one	page	swapping	(Average	of	all	page	swap)	in	revised	protocols	

Staying	time	in	
internal	req.	queue	

is	not	short

Long	staying	time	in	
external	req.	queue
in	r58-protocol

Managing	two	request	queues	is	
difficult	to	achieve	efficient	page	

swapping There	is	no	staying	
time	in	external	

req.	queue
in	r77-protocol

(revised	1:	r58-protocol) (revised	2:	r77-protocol)

Current	and	Future		works

• Protocols designed for m-DSM (Distributed Shared Memory for multithread
programs) (r58 is modified version of the current protocol used in m-DSM.)

• Protocols designed for DLM cache-model (r3, r77 protocols were designed
for DLM flat-model.)

The	best	is	r77 protocol.
The	second	is	r3 protocol	with

SINGLE	and	thread-affinity	(stable	behavior)

