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Abstract— A new partitioned global address space (PGAS) 
runtime, mSMS, with efficient thread-based communication is 
proposed in this work. The mSMS runtime system transparently 
invokes system threads behind a user program, to support the 
concurrent execution of remote communication and calculations, 
and manage dynamic thread creation/deletion in the user program. 
Two types of applications—stencil computations with 
synchronous static data access and Barnes–Hut problems with 
asynchronous dynamic data access—are evaluated. The mSMS 
achieves performance comparable to or better than that of MPI 
and other PGAS languages. 
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I. INTRODUCTION  

Many partitioned global address space languages (PGASs) 
do not provide a genuine global address space (GAS); rather, 
they provide a global name space for the data shared among the 
computing nodes. In some PGASs, the accessible area in the 
shared data space is limited to the boundary sleeve area between 
nodes and/or pointer-based access is not available [1]. In UPC 
[2], pointer-based access to global data is available; however, 
the global pointer to global data has a different datatype from 
that of the local pointer to local data. Most of the PGASs convert 
such a different data-access notation to an explicit 
communication to a remote node, e.g., one-sided MPI, by static 
analysis in its dedicated compiler. This strategy is effective for 
applications with static and synchronous access to predefined 
data areas, such as stencil computations. However, it is not 
sufficient for applications with temporally and spatially dynamic 
data access. In such cases, runtime mechanisms that support 
concurrent computing and communication among user threads 
are necessary. One way to resolve this is by introducing 
application-specific control codes into each application [3]; 
however, this results in low productivity during PGAS program 
development, as in the case of MPI program development.  

II. MSMS WITH EFFICIENT THREAD-BASED COMMUNICATION  

mSMS provides APIs and SMS library functions for an 
efficient runtime system that realizes a GAS for a large number 
of nodes in a cluster system, as shown in Fig. 1. Each thread of 
all SMS processes in nodes can access any part of the GAS using 
a consistent address in an ordinary C pointer. Certain areas of 
the GAS are allocated in the local node memory as owner-pages, 
and the other areas in the GAS are allocated in remote node 
memories. When a thread accesses the remote areas, remote 
SMS pages are cached in a local node as cached pages. When 

the memory-consistency synchronization function is called, the 
modified parts of the cached pages are transferred to the original 
owner node and the cached pages are discarded. The available 
size of the GAS is defined by the product of the available local 
node memory capacity and the number of nodes in use.  

Fig. 2 shows the internal of the SMS process, which includes 
three SMS system threads: 1) comthread that manages the 
internal requests from local user threads and external requests 
from remote nodes, 2) receive-thread that receives 
asynchronous messages from remote nodes, and 3) send-thread 
that sends the requested SMS pages to remote nodes. These 
system threads are invoked transparently when the 
sms_startup() function is called. They work as an efficient 
runtime system to support the concurrent execution of remote 
asynchronous communications and calculations by user threads, 
maintain data consistency among threads, and manage dynamic 
thread creation and deletion by a user program. This SMS 
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Fig. 1.  mSMS global address space  
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 Fig. 2.  mSMS system overview 
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transparent runtime alleviates the burden on programmers, so 
that they can concentrate on the algorithms of their applications 
without worrying about the control of concurrent 
communications and calculations among the many threads in the 
many nodes. Fig. 3 shows an SMS program for 3D 7-point 
stencil computation using SMS shared data statements and SMS 
library functions. It is translated to a general C program by a 
simple SMS translator. The SMS is available without a 
dedicated compiler, unlike the ordinary PGASs.  

III. PERFORMANCE EVALUATION  

 The performances of two different types of applications are 
shown here. One is a stencil computation with synchronous 
access to regular structured data, and the other is an N-body 
problem using the Barnes–Hut [5] with asynchronous access to 
irregular structured data. A Tsubame3.0 [6] super computer is 
used for this evaluation. 

Fig. 4 shows the strong scaling performances of one step time 
of the 2D 5-point stencil computation in UPC [2], XcalableMP 
[1], MPI, and mSMS. The data size employed here is relatively 
small, 64 GB, because of the internal bit length limitation of the 
UPC global pointer. Each language uses its optimal number of 
threads in one node, from 8 to 32 threads [4]. The performances 
of UPC using the global pointer and local pointer are the worst 
and second worst, respectively. The mSMS achieves the best 
performance; which is almost the same as that of MPI. The 
XcalableMP also achieves comparable performance to that of 
mSMS, except in the case using two nodes. Fig. 5 shows the 
weak scaling performance for 3D 7-point stencil computation 
for large data, in the size of 0.26 TB – 23.0 TB, using 2 to 180 
nodes in MPI and mSMS. The mSMS achieves better or 
comparable performances, when compared to MPI. An mSMS 
process updating a 128 GB data array in local memory in each 
node shares a 30 TB GAS among 180 nodes. Fig. 6 shows the 
performance of an n-body problem (1M – 512M bodies) in 3D 
space using mSMS with 64 nodes (processes) × 32 threads. This 
is a straightforward implementation of the Barnes–Hut [5] 
algorithm, which uses shared tree data allocated in mSMS GAS. 
Each thread in the nodes accesses the tree asynchronously, using 
an ordinary C pointer for its force calculation. Ordinary MPI 
implementation employs the Local Essential Tree (LET) method 
[5], where each MPI process first identifies the necessary LET 
data for its force calculation and collects the data from remote 
nodes before the calculation. On the other hand, the mSMS 

threads directly access the tree while the force calculation. The 
mSMS program is very simple, when compared to the UPC 
implementation [3] where complicated runtime control codes 
are introduced in the user program. In the mSMS, the shared tree 
is distributedly mapped in each node based on the space filling 
curve (SFC) to increase the access locality in each node. The 
performance of the current naïve version of the mSMS program 
is comparable to that of the UPC implementation. 

REFERENCES 

[1] XcalableMP https://xcalablemp.org/  [ online 8/23/2019 ] 

[2] Berkeley UPC ver.2.28.9  http://upc.lbl.gov/  [ online 8/23/2019 ] 
[3] J. Zhang, B. Behzad, and M. Snir, “Design of a multithreaded Barnes-Hut 

algorithm for multicore clusters,” IEEE Trans. Parallel Distrib. Syst., vol. 26 , 

no. 7, pp.1861–1873, 2015. 
[4] Y. Sakaguchi and H. Midorikawa, “The programmability and performance 

of global-view programming API: SMint for multi-node and multi-core 

processing,” IEEE Pacific Rim Conf. Commun. Comp. Signal Proc., 2019.8 
[5] J. K. Salmon, “Parallel implementation of the BH algorithm,” PhD. 

dissertation, Phys., Math. Astron. Dept., California Inst. Technol., Pasadena, 
CA, USA, (1991). 

[6] Tsubame3  http://www.gsic.titech.ac.jp/en, [ online 8/23/2019 ] 

 
Fig. 3.  SMS program for 7-point 3D-stencil computations. 

#include <sms.h>
shared double A[NZ][NY][NX]::[NPROCS][1][1]  (0, NPROCS);
shared double B[NZ][NY][NX]::[NPROCS][1][1]  (0, NPROCS);
main()
{        double (*src)[NY][NX];    double (*dst)[NY][NX];   double (*tmp)[NY][NX];  // Pointers to 3D‐arrays

sms_startup(&argc, &argv); // Start mSMS system
nx = NX,  ny = NY,  nz = NZ;  // problem domain array size
bx = nx,  by = ny;  bz = nz / NPROCS;  // block size for one node, divided in z‐dimension

:
sx = 0; ex = bx;     sy = 0; ey = by; 
sz = MYPID * bz;  ez = (MYPID + 1) * bz;    // z‐division

:
for (z = sz; z < ez; z++)  for (y = sy; y < ey; y++)  for (x = sx; x < ex; x++) {A[z][y][x]  = ? ; B[z][y][x]  = ? ;  } //Array Init.
sms_barrier();   // execution & memory consistency sync.
src = A;   dst = B;
for (t = 0; t < nt; t++) {
#pragma omp parallel for
for (z = sz; z < ez; z++)  for (y = sy; y < ey; y++)  for (x = sx; x < ex; x++) {  // 7‐point Stencil Calc.   
dst[z][y][x]=0.4*src[z][y][x]+

0.1*(src[z‐1][y][x]+src[z+1][y][x]+src[z][y‐1][x]+src[z][y+1][x]+src[z][y][x‐1]+src[z][y][x+1]);
}  
sms_sync_drop(); // execution‐synch. & discard cache pages
tmp= dst; dst = src; src = tmp; //  swap src and dst pointers

}
sms_shutdown(); // Finalize mSMS system

}
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Fig. 4. Strong scaling performances of 2D 5-point stencil 
computations. One step time for 64GB data in UPC, XcalableMP, MPI, 
and mSMS 
 

 
Fig. 5.  Weak scaling performances of 3D 7-point stencil computation. 

mSMS+OpenMP vs. MPI+OpenMP 
 (One step time for 256GB – 23TB data using 2 – 180 nodes) 

 
Fig. 6.  Barnes–Hut n-body problem one step time (mSMS). 
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