
978-1-7281-4734-5/19/$31.00 ©2019 IEEE

mSMS: PGAS Runtime with Efficient Thread-based
Communication for Global-view Programming

Hiroko Midorikawa, Kenji Kitagawa, Yugo Sakaguchi
Department of Computer and Information Science, Seikei University

Tokyo, Japan
midori@st.seikei.ac.jp, kitagake@ci.seikei.ac.jp, dm186204@cc.seikei.ac.jp

Abstract— A new partitioned global address space (PGAS)
runtime, mSMS, with efficient thread-based communication is
proposed in this work. The mSMS runtime system transparently
invokes system threads behind a user program, to support the
concurrent execution of remote communication and calculations,
and manage dynamic thread creation/deletion in the user program.
Two types of applications—stencil computations with
synchronous static data access and Barnes–Hut problems with
asynchronous dynamic data access—are evaluated. The mSMS
achieves performance comparable to or better than that of MPI
and other PGAS languages.

Keywords—PGAS, global address space, software-distributed
shared memory, global-view programming, cluster, runtime system

I. INTRODUCTION

Many partitioned global address space languages (PGASs)
do not provide a genuine global address space (GAS); rather,
they provide a global name space for the data shared among the
computing nodes. In some PGASs, the accessible area in the
shared data space is limited to the boundary sleeve area between
nodes and/or pointer-based access is not available [1]. In UPC
[2], pointer-based access to global data is available; however,
the global pointer to global data has a different datatype from
that of the local pointer to local data. Most of the PGASs convert
such a different data-access notation to an explicit
communication to a remote node, e.g., one-sided MPI, by static
analysis in its dedicated compiler. This strategy is effective for
applications with static and synchronous access to predefined
data areas, such as stencil computations. However, it is not
sufficient for applications with temporally and spatially dynamic
data access. In such cases, runtime mechanisms that support
concurrent computing and communication among user threads
are necessary. One way to resolve this is by introducing
application-specific control codes into each application [3];
however, this results in low productivity during PGAS program
development, as in the case of MPI program development.

II. MSMS WITH EFFICIENT THREAD-BASED COMMUNICATION

mSMS provides APIs and SMS library functions for an
efficient runtime system that realizes a GAS for a large number
of nodes in a cluster system, as shown in Fig. 1. Each thread of
all SMS processes in nodes can access any part of the GAS using
a consistent address in an ordinary C pointer. Certain areas of
the GAS are allocated in the local node memory as owner-pages,
and the other areas in the GAS are allocated in remote node
memories. When a thread accesses the remote areas, remote
SMS pages are cached in a local node as cached pages. When

the memory-consistency synchronization function is called, the
modified parts of the cached pages are transferred to the original
owner node and the cached pages are discarded. The available
size of the GAS is defined by the product of the available local
node memory capacity and the number of nodes in use.

Fig. 2 shows the internal of the SMS process, which includes
three SMS system threads: 1) comthread that manages the
internal requests from local user threads and external requests
from remote nodes, 2) receive-thread that receives
asynchronous messages from remote nodes, and 3) send-thread
that sends the requested SMS pages to remote nodes. These
system threads are invoked transparently when the
sms_startup() function is called. They work as an efficient
runtime system to support the concurrent execution of remote
asynchronous communications and calculations by user threads,
maintain data consistency among threads, and manage dynamic
thread creation and deletion by a user program. This SMS

This work is funded by JHPCN-HPCI (Prject ID: jh190039-ISH) and JSPS
KAKENHI (Grant Number JP18K11327)

Fig. 1. mSMS global address space

.

 Fig. 2. mSMS system overview

Node

: User thread, Com SMS System threads Ut Com Recv Send

Cal.
Que.

Calculation/Return/Receive/Page
Request Queues

Ret.
Que.

Rec.
Que.

Page
Que.

Ut

Ut

Ut

: Recv

Send

User Application program

Node

*
*

Ut

Ut

Ut

:

Com

Recv

Send

User Application Process

Cal.
Que.

Rec.
Que.

Ret.
Que.

Page
Que.

Cal.
Que.

Rec.
Que.

Ret.
Que.

Page
Que.

Com

SMS System

transparent runtime alleviates the burden on programmers, so
that they can concentrate on the algorithms of their applications
without worrying about the control of concurrent
communications and calculations among the many threads in the
many nodes. Fig. 3 shows an SMS program for 3D 7-point
stencil computation using SMS shared data statements and SMS
library functions. It is translated to a general C program by a
simple SMS translator. The SMS is available without a
dedicated compiler, unlike the ordinary PGASs.

III. PERFORMANCE EVALUATION

 The performances of two different types of applications are
shown here. One is a stencil computation with synchronous
access to regular structured data, and the other is an N-body
problem using the Barnes–Hut [5] with asynchronous access to
irregular structured data. A Tsubame3.0 [6] super computer is
used for this evaluation.

Fig. 4 shows the strong scaling performances of one step time
of the 2D 5-point stencil computation in UPC [2], XcalableMP
[1], MPI, and mSMS. The data size employed here is relatively
small, 64 GB, because of the internal bit length limitation of the
UPC global pointer. Each language uses its optimal number of
threads in one node, from 8 to 32 threads [4]. The performances
of UPC using the global pointer and local pointer are the worst
and second worst, respectively. The mSMS achieves the best
performance; which is almost the same as that of MPI. The
XcalableMP also achieves comparable performance to that of
mSMS, except in the case using two nodes. Fig. 5 shows the
weak scaling performance for 3D 7-point stencil computation
for large data, in the size of 0.26 TB – 23.0 TB, using 2 to 180
nodes in MPI and mSMS. The mSMS achieves better or
comparable performances, when compared to MPI. An mSMS
process updating a 128 GB data array in local memory in each
node shares a 30 TB GAS among 180 nodes. Fig. 6 shows the
performance of an n-body problem (1M – 512M bodies) in 3D
space using mSMS with 64 nodes (processes) × 32 threads. This
is a straightforward implementation of the Barnes–Hut [5]
algorithm, which uses shared tree data allocated in mSMS GAS.
Each thread in the nodes accesses the tree asynchronously, using
an ordinary C pointer for its force calculation. Ordinary MPI
implementation employs the Local Essential Tree (LET) method
[5], where each MPI process first identifies the necessary LET
data for its force calculation and collects the data from remote
nodes before the calculation. On the other hand, the mSMS

threads directly access the tree while the force calculation. The
mSMS program is very simple, when compared to the UPC
implementation [3] where complicated runtime control codes
are introduced in the user program. In the mSMS, the shared tree
is distributedly mapped in each node based on the space filling
curve (SFC) to increase the access locality in each node. The
performance of the current naïve version of the mSMS program
is comparable to that of the UPC implementation.

REFERENCES

[1] XcalableMP https://xcalablemp.org/ [online 8/23/2019]

[2] Berkeley UPC ver.2.28.9 http://upc.lbl.gov/ [online 8/23/2019]
[3] J. Zhang, B. Behzad, and M. Snir, “Design of a multithreaded Barnes-Hut

algorithm for multicore clusters,” IEEE Trans. Parallel Distrib. Syst., vol. 26 ,

no. 7, pp.1861–1873, 2015.
[4] Y. Sakaguchi and H. Midorikawa, “The programmability and performance

of global-view programming API: SMint for multi-node and multi-core

processing,” IEEE Pacific Rim Conf. Commun. Comp. Signal Proc., 2019.8
[5] J. K. Salmon, “Parallel implementation of the BH algorithm,” PhD.

dissertation, Phys., Math. Astron. Dept., California Inst. Technol., Pasadena,
CA, USA, (1991).

[6] Tsubame3 http://www.gsic.titech.ac.jp/en, [online 8/23/2019]

Fig. 3. SMS program for 7-point 3D-stencil computations.

#include <sms.h>
shared double A[NZ][NY][NX]::[NPROCS][1][1] (0, NPROCS);
shared double B[NZ][NY][NX]::[NPROCS][1][1] (0, NPROCS);
main()
{ double (*src)[NY][NX]; double (*dst)[NY][NX]; double (*tmp)[NY][NX]; // Pointers to 3D‐arrays

sms_startup(&argc, &argv); // Start mSMS system
nx = NX, ny = NY, nz = NZ; // problem domain array size
bx = nx, by = ny; bz = nz / NPROCS; // block size for one node, divided in z‐dimension

:
sx = 0; ex = bx; sy = 0; ey = by;
sz = MYPID * bz; ez = (MYPID + 1) * bz; // z‐division

:
for (z = sz; z < ez; z++) for (y = sy; y < ey; y++) for (x = sx; x < ex; x++) {A[z][y][x] = ? ; B[z][y][x] = ? ; } //Array Init.
sms_barrier(); // execution & memory consistency sync.
src = A; dst = B;
for (t = 0; t < nt; t++) {
#pragma omp parallel for
for (z = sz; z < ez; z++) for (y = sy; y < ey; y++) for (x = sx; x < ex; x++) { // 7‐point Stencil Calc.
dst[z][y][x]=0.4*src[z][y][x]+

0.1*(src[z‐1][y][x]+src[z+1][y][x]+src[z][y‐1][x]+src[z][y+1][x]+src[z][y][x‐1]+src[z][y][x+1]);
}
sms_sync_drop(); // execution‐synch. & discard cache pages
tmp= dst; dst = src; src = tmp; // swap src and dst pointers

}
sms_shutdown(); // Finalize mSMS system

}

Global shared arrays with distributed mapping
in z‐dimension over NPROCS nodes

Node‐0

Node‐1

Node‐2

Node‐3

Y

X

MYPID：Node‐Process ID
NPROCS：Num. of Total Node‐Processes

The actual code employs six loops to implement internal spatial blocking for
increasing access locality

SMS 7‐point Stencil Program
Skelton

Z

Fig. 4. Strong scaling performances of 2D 5-point stencil
computations. One step time for 64GB data in UPC, XcalableMP, MPI,
and mSMS

Fig. 5. Weak scaling performances of 3D 7-point stencil computation.

mSMS+OpenMP vs. MPI+OpenMP
 (One step time for 256GB – 23TB data using 2 – 180 nodes)

Fig. 6. Barnes–Hut n-body problem one step time (mSMS).

589
603

608 617 626 630 630
636 679 683 682

509 523
528 556 564 602 604

642
660

700 714

0

100

200

300

400

500

600

700

800

2
0.26

4
0.51

8
1

16
2

32
4

64
8

72
9.2

96
12.3

128
16

160
20.5

180
23.0

T
im

e
 (
s)

Num of nodes / Problem size (TB)

Simple 7p stencil Time (128GB/node, 24 threads, nt=128)

MPI mSMS

0.33 0.43 0.80 1.17
1.71 2.83 4.77

8.61

15.62

28.71

0

5

10

15

20

25

30

35

1M 2M 4M 8M 16M 32M 64M 128M 256M 512M

Ti
m
e
 (
s)

Num of bodies

Barnes‐Hut N‐body one step time
(θ=0.5, 64 Nodes x 32 threads)

root child create
 (1‐node)

Tree create
(64‐nodes)

Tree sort, store body
(64‐nodes)

Calculate force
(64 nodes*32th)

