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Abstract—This paper investigates the potential of flash as a large 
and slow memory behind dynamic random-access memory 
(DRAM) for stencil computation, which is one of the most 
common and important computation kernels in various scientific 
and engineering simulations. We evaluate the performance of a 
fastswap kernel, which was recently incorporated into Linux, in 
stencil computation using flash as a swap device. Moreover, we 
propose a locality-aware, hierarchical out-of-core computation 
algorithm by employing data structure blocking techniques in 
stencil computations to bridge the DRAM-flash latency divide. 
We find that 7-point and 27-point stencil computations for a 1-
TiB problem size (32 times that of the DRAM), using only a 32-
GiB DRAM and a flash solid-state drive (SSD), in Mflops attain 
24% and 47%, respectively, of the performance achieved in 
execution using only DRAM.  

Keywords—Non-volatile memory (NVM); flash memory; SSD; 
memory hierarchy; temporal blocking; stencil computation; slow 
memory; access locality; locality-aware. 

I. INTRODUCTION  
 Stencil computation is one of the most popular and 
important types of processing in various scientific and 
engineering simulations. It performs iterative calculations on a 
limited data set, typically the nearest neighbor data. It sweeps 
the entire data – e.g., three-dimensional (3D) physical data 
space – and updates them at each time step. Fig. 1 shows a 
typical stencil computation for a 3D data grid – a 7-point 
stencil computation using the six nearest neighbor points and a 
19-point stencil computation using the 18 nearest neighbor 
points. 

 
Fig. 1. 7-point and 19-point stencil calculations on 3D data. 

 Like most scientific computation, stencil computation often 
requires a large memory to tackle big-sized problems or for 
higher resolution data analysis. However, there is a limit to the 
extent to which dynamic random access memory (DRAM) can 
be increased in main memory, because there is a limited 
number of memory slots on server boards, limited power 

consumption, and other resource limitations. The most direct 
and the traditional way to use data larger than the size of the 
physical memory is through virtual memory system in an 
operating system (OS), where the program implicitly uses a 
swap device instead of the main memory. However, in modern 
high-performance computing, it is common practice to avoid 
paging to a swap device that is prohibitively slow with a hard 
disk drive (HDD). The swap system in an OS kernel, which 
was originally designed for slow HDDs and small memory, 
and has not been significantly upgraded for a long time. This is 
a reason for why paging to a swap device becomes obsolete in 
high-performance computing.  

 On the other hand, the advent of new non-volatile 
memories (NVMs) influences not only the traditional memory 
hierarchy, but also the basic idea of memory read/write and file 
input/output (IO) in traditional programming models [1]. Many 
kinds of NVMs, such as flash memory, Resistive Random-
Access Memory (ReRAM), Phase-Change Memory (PCM) 
and Magnetoresistive RAM (MRAM) are being extensively 
researched and developed nowadays. Of these NVMs, flash 
memory is already widely available to end-users. Its access 
time is not as short as that of DRAM, but it provides a much 
greater capacity at a lower cost and with less power 
consumption. It is already used as a front-end cache in large 
hybrid storage systems with HDDs and an intermediate tier 
between the DRAM memory and the HDDs. However, in the 
most cases, a flash is still employed as a storage device and 
used through file input/output (IO) function calls from 
applications. With regard to power consumption, cost and 
space, flash memory is a natural choice as a DRAM extension 
to the main memory.  

 There are several options in the use of flash solid state 
drives (SSD) as memory, e.g., using a file memory map 
mechanism with the existing mmap() function in Unix, or using 
new memory allocation functions specially designed for flash 
SSDs, such as SSDAlloc() [4][5]. Of these, the most convenient 
and transparent way for users is to use a flash SSD implicitly 
as a swap device under the virtual memory system of the OS. 
Two improvements have recently been made in use of flash 
SSDs as a swap device. One is the development of Peripheral 
Component Interconnect Express (PCIe) bus-connected flash 
SSDs [2][3]. The access latency levels of these are several 
hundred times lower than those of HDDs. The other 
improvement is the introduction of a revised swap system for 



the OS kernel: fastswap [6][7][8]. It is designed for high-speed 
swap devices, such as a flash SSD.  

The access latency of PCIe-based flash SSDs is much smaller 
than that of HDDs, but its latency level is several hundred to a 
thousand times greater than the latency of DRAMs, as shown 
in Fig. 1. The gap in latency between DRAM and flash SSD is 
much larger than that between the level-3 (L3) cache and main 
memory. The L3 cache is only three to 10 times faster than the 
main memory. Thus, the large latency gap between DRAM and 
flash SSD makes it difficult to use the latter as a main memory 
extension for applications. 

 
Fig. 2. Latency in various devices. 

 In this backdrop, we first investigate several aspects of 
flash SSDs as a main memory extension in the new swap 
kernels. We then design and introduce a locality-aware 
algorithm to a stencil computation. The stencil computation has 
desirable levels of spatial and temporal locality in data access. 
A standard optimization procedure such as spatial blocking is 
usually applied to obtain optimal spatial locality in memory 
access. Moreover, temporal blocking optimization is also 
applicable to regular data access patterns in iterative update 
procedures. Temporal blocking involves updates of several 
time steps for a local small block before proceeding to the next 
block. It boosts data access speed by exploiting temporal 
locality. In this paper, we apply this optimization to the DRAM 
and flash SSD tiers in stencil computations and investigate the 
potential of flash SSD as a large and slow memory for stencil 
computations.  

Our contributions are summarized as follows:  

l The basic performance of a PCIe-based flash SSD as 
a swap device is investigated under the widely used 
conventional kernel and compared with a HDD and 
an ordinary flash SSD. Moreover, the impact of the 
fastswap kernel in using a PCIe-based flash SSD is 
evaluated for the STREAM benchmark [9] and for 
stencil computations.  

l  Under the fastswap kernel, a hierarchical out-of-core 
computation algorithm is newly designed and applied 
in a stencil computation to bridge the DRAM-flash 
latency divide. It performs sufficiently well for 
practical use, thus exhibiting the potential of a flash 
SSD as slow and large memory.  

 In section II, we conduct preliminary performance 
evaluations by comparing PCIe-based flash SSD as a swap 
device with a HDD and a conventional flash SSD through 
STREAM benchmark [9]. In section III, we evaluate the effect 
of the fastswap kernel on a PCIe-based flash SSD for 
STREAM benchmark and stencil computations. In section IV, 

we propose a spatial and temporal blocking optimization 
algorithm, which designed for the memory tier of the DRAM 
and flash. Section V presents a preliminary parameter tuning 
for the temporal blocking for a flash SSD. In Section VI, we 
test the performance of stencil computing with multi-level 
optimization, temporal and spatial blocking, when using flash 
SSD as slow memory. In section VII, we outline our 
conclusions and directions for future work.  

II. SWAP DEVICE PERFORMANCE UNDER TRADITIONAL 
KERNEL 

 In this section, we investigate the basic performance of 
PCIe-based flash SSDs as a swap device in comparison with a 
serial advanced technology attachment (SATA)-based HDD 
and a SATA-based flash SSD under the conventional CentOS6 
(kernel 2.6.32). The experimental setting is shown in Table I.  

TABLE I.  EXPERIMENTAL ENVIRONMENT 1 

 
 

 
 

Fig. 3 compares the execution times of the STREAM 
benchmark [9] in three cases: 1) using SATA3-baed HDD, 2) 
using traditional SATA-based flash SSD, and 3) using PCIe-
based flash device (FusionIO ioDrive2 (ioD)) [2], as a swap 
device. This experiment is conducted on a fixed-size physical 
memory of 32 GiB with a varying number of elements in 
arrays used in the STREAM benchmark. STREAM is designed 
to measure the bandwidth at each level of the memory 
hierarchy by changing the size of arrays used inside. It uses 
three arrays in four calculation types (COPY: a(i) = b(i), 
SCALE: a(i) = q × b(i),  SUM:  a(i) = b(i) + c(i), TRIAD: a(i) = 
b(i) + q × c(i) ) . It scans entire arrays sequentially for each 
calculation. Thus, its memory access locality is low and 
floating operations take up a small fraction of the entire 
execution time. 

 The horizontal axis in Fig.3 represents a physical memory 
ratio, the ratio of used physical memory to the program’s 
virtual size. The drop in the physical memory ratio from 100% 
to 24.5% on the horizontal axis corresponds to the virtual 
memory size of the array data from 2.3 GiB to 109.9 GiB. The 
vertical axis represents the relative execution time of STREAM 
data running on the physical memory. These are individually 
normalized by the time taken for the execution of each set of 
data using the full 128-GiB memory. The leftmost line 
represents the case where a HDD is used as a swap device, 
which significantly increases the execution time as the array 
size increases. Processing 1,600M array elements, 
corresponding to 37GiB, on a 32-GiB physical memory server 
takes about six hours (21,440 s). The original execution time 
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using full memory is only 147 sec. For the same amount of 
processing, SSD takes 3.3 hours (12,150 sec) whereas the ioD 
takes 1.7 hours (6,381 sec). The HDD is prohibitively slow, but 
ioD relative time saturated to 70–94 times larger value 
compared to on-memory processing time. Fig. 4 shows the 
relative execution times of arrays 32GiB and 37GiB in size, 
normalized by the execution times on full memory. Even when 
processing a 32-GiB array, the process cannot use all the 
physical memory, and thus execution times rapidly increase.  

 
Fig. 3. STREAM: Relative time for data larger than physical memory size 

(32 GiB, 1 thread, CentOS6 kernel 2.6.32). 

 

Fig. 4. Relative times of STREAM, with 10-iterations for array data size 
32.0GB and 36.6GB on 32 GiB physical memory, 1 thread, CentOS6 kernel 

2.6.32 

III.  THE IMPACT OF FASTSWAP KERNEL PERFORMANCE  
 In this section, the impact of the fastswap kernel in using a 
PCIe-based flash SSD is evaluated. Our evaluation uses 
ioDrive2 (ioD) [2], as swap devices for three Linux kernels – 
2.6.32 (CentOS6), 3.6.0 and fastswap, which is the patched 
version of 3.6.0 incorporated with nvm-fastswap [7][8]. The 
experimental environment is shown in Table II.  

TABLE II.  EXPERIMENTAL ENVIRONMENT 2 

 

A. STREAM benchmark under Fast Swap and other Kernels 
 The performances of STREAM benchmark under the three 
kernels are investigated. Fig. 5 and Fig. 6 show the execution 
time and the average bandwidth, when the size of STREAM 
array is 36.6GiB, 1600M elements, and physical memory size 
is 32GiB. The measured values of STREAM sometimes 
fluctuate when a swap daemon is running, but kernel 3.6.0 has 
a poor performance for multi threads executions in this 
experiment. 

 
Fig. 5. STREAM Performance on various kernels, 1600M elements, 10 

iterations, 1-16 threads, ioDrive2, two-socket server in Table I 

B. A Stencil Computation under Fast Swap and other Kernels  
 We now evaluate the stencil computations with ioD under 
the three kernels. Fig. 6 shows the core execution time, which 
includes iterative steps and excludes data initialization, for the 
7-point stencil computation shown in Fig. 1. The 3D grid 
domain size used here is 2048 x 2048 x 1024, which 
corresponds to 64 GiB and is two times larger in size than 
physical memory. This stencil computation employs a standard 
3D-space blocking optimization to increase data access locality. 
The sub-block size for a space blocking is 32 x 32 x 32. It is 
the size that fits into L3 cache. In this experiment, the number 
of iterations is 256. According to Fig. 6, there is not much of a 
difference between the fastswap and the 3.6.0 kernel. The 
execution times on 32-GiB physical memory are 12.3 times 
longer than that using 128-GiB memory under the fastswap. 
Although the physical memory ratio is about 50%, its 
performance is not so poor compared to the STREAM case 
shown in Fig. 3. This is because a stencil computation contains 
more memory access locality than the STREAM benchmark.  
However, the performance described above is not satisfactory 
for flash memory as a main memory extension. Thus, we 
introduce a temporal blocking algorithm to increase data access 
locality in stencil computations. 

 
Fig. 6. Kernel comparison of 2048x2048x1024, 7-point stencil (64GiB 
problem), 256 iterations, on a 32-GiB physical memory and ioD as swap 

device with madvise, 8 threads, one-socket server 
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IV. A LOCALITY-AWARE ALGORITHM FOR USING FLASH SSD 
AS SLOW MEMORY 

In this section, we introduce a locality-aware, hierarchical 
out-of-core computation algorithm that uses spatial and 
temporal blocking optimization. Our algorithm is incorporated 
into stencil computation to bridge the large flash-DRAM 
latency gap when flash is used as main memory extensions. 

A. A Temporal Blocking Optimization 
 Temporal blocking involves updating several time steps for 
a local small block before proceeding to the next block. Here, 
we use a two-dimensional grid array and 5-point stencil 
computation to explain temporal blocking optimization.  

 Spatial blocking optimization typically extracts spatial 
access locality, and its algorithm is shown in Fig. 7. Each 
spatial block computation reads grid data from the reference 
area and writes results to the update area, as shown in Fig. 8.  
  

  
Fig. 7. Non-blocking and spatial blocking for stencil computations 

 
Fig. 8. Spatial blocking  using two buffers: every time step, source and 

destination buffers are exchenged. 

In conventional stencil computation, grid data are stored in one 
of two buffers – the source buffer – and data in the source 
buffer are read, calculated, and written to the other buffer – the 
destination buffer. After updating the 3D data, which 
constitutes one time-step iteration, the source and the 
destination buffers are exchanged.  

 

Fig. 9. One temporal block computation: It advances bt time steps internally. 
It reads data in reference area (bx + 2 × bt) × (by + 2 × bt) and finally updates 

the data in update area: bx × by. 

 
Fig. 10. Temporal blocking using two buffers and two block buffers. 

 On the other hand, temporal blocking optimization extracts 
both spatial and temporal access localities. Temporal blocking 
divides the entire time space into sub-time blocks for iterative 
computations. One temporal block computation updates all 
grid data in a spatial block in several time steps. The number of 
time-steps advanced locally is temporal block size (bt). Fig. 9 
shows the example of one temporal block computation when bt 
equals 2. In this case, one block computation updates data two 
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times to advance two time steps, before proceeding to the next 
block computation. Every temporal blocking update requires a 
larger update area than the original spatial block size, in order 
to locally advance the time step. Thus, another two block 
buffers have to be prepared in addition to the two buffers, as 
shown in Fig. 10. Using these two block buffers, one temporal 
blocking computation, bt-times updates , is carried out. After 
one temporal block computation is finished, the result in the 
block buffer is copied back to a destination buffer. 

B. A Temporal Blocking Algorithm for DRAM and Flash 
 The temporal blocking algorithm of flash SSD and the 
memory is shown in Fig. 11 and Fig. 12. In this algorithm, two 
block buffers are prepared in addition to two 3D data buffers. 
The data buffers are divided into several 3D blocks. In the first 
iteration, one block part of the buffer data – e.g., Buffer-0 – is 
calculated as source data, and the result data are written to a 
destination block buffer – e.g., Block-0. In the second iteration, 
the source data in Block-0 are calculated, and updated data are 
written to the other block buffer – Block-1. In all iterations 
except the first and the last, the two block buffers are used in 
updating calculations by exchanging source and destination. At 
the final iteration, the block buffer written to last becomes the 
source buffer, while the other data buffer, Buffer-1, becomes 
the destination buffer.  

 
Fig. 11. Calculating data flow in temporal blocking for flash and DRAM tiers. 

 In this experiment, two 3D data buffers and blocks are 
allocated by malloc() with MADV_SEQUENTIAL madvise(). 
The size of the data is larger than that of the DRAM memory, 
because of which most of the data are swapped out to a swap 
device – the flash SSD. When a program accesses the data in a 
swapped-out page, a swap daemon swaps in the required page 
from the swap device. On the other hand, block buffers are 
fixed on the DRAM memory by mlock() to prevent them from 
swapping out to a swap device. At the first and last iterations, 
update calculations access the buffer data, which are supposed 
to exist in the flash SSD. However, in the remaining iterations, 
the calculations only use data on the block buffers in the 
DRAM. Actual block buffer sizes are larger than the 
subdomain sizes – bx, by, and bz – shown in Fig. 12. They 

have extra ghost regions on both sides for each dimension in 
3D for temporal blocking. The size along the x-axis becomes 
bx + 2 × bt when the temporal block size is bt. This algorithm 
is called a one-level temporal blocking algorithm in this paper. 

 
Fig. 12. 1-level temporal blocking algorithm: pseudo codes for a 3D domain. 

V. PRELIMINARY PARAMETER INVESTIGATION OF 
TEMPORAL BLOCKING FOR FLASH  

 In temporal blocking for stencil computations, there is a 
tradeoff between slow memory access and redundant 
calculation overhead for ghost areas, the size of which varies 
with the temporal block size. There are other tuning parameters, 
such as spatial blocking size versus temporal blocking size 
under limited DRAM memory. In this paper, using flash as 
slow memory is the biggest factor affecting temporal blocking 
for a stencil computation in comparison with other factors such 
as caches, NUMA memory and CPU architectures. 
Incorporating various levels and kinds of parameter tuning 
dependent on the underlining architecture generates a large 
parameter space to sweep, which makes results more specific 
and, hence, complex to analyze. Thus, in this experiment, we 
only apply basic parameter tuning to temporal blocking. 

TABLE III.  EXPERIMENTAL ENVIRONMENT 3 

 

 To find adequate temporal and spatial blocking parameters 
for stencil computation on flash, a 7-point stencil is used. The 
experiment is performed using ioD under fastswap, as shown 
in Table III. The domain of a stencil computation is 3D 2048 x 
2048 x 1024 double data. The total program size becomes 
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larger than 64 GiB because it requires two spatial block buffers 
with an extra ghost area depending on temporal blocking size. 

A. Space Block Size vs. Temporal Block Size  
 First, several temporal and spatial blocking size 
combinations are investigated on a 128-GiB full memory 
execution. Fig. 13 shows an effective Mflops, calculated by the 
measured core computation time, the amount of data update 
and the number of floating operations per data update. Each 
line represents subdomain spatial size, from 32 x 32 x 32 to 
1024 x 1024 x 1024. This clearly shows the tradeoff between 
spatial and temporal block sizes. These parameter sets boost 
the performance by 40%-50% more than the method that uses 
only spatial blocking, corresponding to the leftmost point in 
Fig. 13. 

 
Fig. 13. Spatial block size vs. temporal block size on full memory (128GiB) 
7-point stencil (2048 x 2048 x 1024 double 64 GB+, 256 item. 8 threads). 

 
Fig. 14. Spatial block size vs. temporal block size on limited memory (32GiB) 

and flash  7-point stencil (2048 x 2048 x 1024 double 64 GB+, 256 item. 8 
threads). 

 Following this, the same stencil program is evaluated on a 
32-GiB physical memory, which corresponds to half of the 
problem size. The experiment using three spatial blocking sizes 
is shown in Fig. 14. The spatial size 1024 x 1024 x1024 seems 
to enhance performance for temporal size larger than 128 time-
steps. However, the total buffer and block size with a temporal 
block size of 256 is 118 GiB, and the performance sharply 
drops because of the lack of the physical memory, as shown in 
Fig.14. As a result, the best performance parameter set for this 

problem size with 256 iterations is a spatial block size of1024 x 
1024 x 1024 and a temporal block size of128 time steps. 

 In the flash and DRAM tiers, the cost of redundant 
calculations caused by temporal blocking is small compared to 
the access overhead due to flash. The lesson here is that the 
biggest spatial and temporal block size combination that can fit 
the available physical memory is preferable for temporal 
blocking for DRAM and a flash.  

B. Multi-level Blocking: Temporal and Spatial Blocking  
 According to our previous parameter tuning result, a large 
spatial block size, such as 1024 x 1024 x 1024, is preferable. 
However, from the perspective of cache utilization, the 
straightforward calculation of 1024 x 1024 x 1024 is inefficient. 
Hence, another spatial blocking – a 32 x 32 x 32 sub-block for 
the 1024 x 1024 x 1024 – is introduced as a two-level temporal 
and space blocking. Fig. 15 shows execution times with full 
memory (128 GiB). Its relative times are normalized by the 
time taken by a one-level blocking with eight threads. Using 
eight threads, the two-level blocking is 2.2 times faster than 
one-level blocking. Thus, this two-level algorithm is used in 
the following experiments. 

 
Fig. 15. One-level blocking vs. two-level blocking on full memory (128GiB), 

7-point stencil (2048 x 2048 x 1024 double 64 GB+, 256 item. 8 threads),  
(temporal block size = 128, spatial: 1st block size = 1024, 2nd block size = 32). 

VI. PERFORMANCE OF HIERARCHICAL BLOCKING FOR 
STENCIL COMPUTATIONS ON FLASH   

 In this section, we measure the performance of a two-level 
blocking algorithm with multiple threads for a stencil 
computation using limited memory and flash SSD. In this two-
level blocking algorithm, temporal blocking is applied to the 
DRAM main memory and the flash tier, whereas the second 
level spatial blocking is applied to the cache and the main 
memory tier. A set of spatial and temporal blocking sizes is 
selected by using our results in the previous section by 
choosing the largest power of two as the spatial block size that 
fits in the physical memory, and the maximum temporal block 
size from the available combinations. 

A. Varing Physical Memory size for Fixed Problem size 
 First, we investigated the performance of the two-level 
blocking algorithm with eight threads by fixing the problem 
size to a 2048 x 2048 x 1024 stencil problem and varying the 
physical memory sizes – ranging from 128 GiB to 8 GiB – in 
the server, as shown in Table III. Fig. 16 shows the relative 
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execution times in both cases for 7-point and 19-point stencil 
computations. Fig. 17 shows effective Flops. The horizontal 
axis represents the physical memory size used for the 
experiment. The actual program data size is larger than the 
problem size as shown in Table IV. For example, at the point 
in Fig. 16 where the physical memory is 64 GiB, the actual 
program data size is 95.5 GiB and the actual physical memory 
ratio is 0.67 (= 64/95.5). At a physical memory size is 16 GiB, 
the execution times for 64GiB problem are 2.18 and 1.65 times 
higher, respectively, than ordinary full memory execution. The 
19-point computation has more calculations per memory and 
cache access than the 7-point computation. Thus, the 
degradation in performance is smaller even with limited 
memory.  

 
Fig. 16. Relative time for stencil with 2-level temporal blocking (2048 x 2048 

x 1024 double 64 GB+, 256 ite. one-socket server, 8 threads). 

 
Fig. 17. Effective MFLOPS of stencil with 2-level temporal blocking (2048 x 

2048 x 1024 double 64 GB+, 256 ite. one-socket server, 8 threads).  

TABLE IV.  PROBLEM SIZE AND ACTUAL DATA SIZE AND PHYSICAL 
MEMORY RATIO  

 
 

B. Varing Blocking Optimizations for Fixed Problem  
 To evaluate the effectiveness of the temporal blocking 
algorithm, we compare two types of executions for 7-point 
stencil computation for a 64-GiB problem, as shown in Fig. 18. 
Type-1 represents the temporal blocking algorithm designed for 
32 GiB memory. It employs two-level blocking, temporal and 
spatial blockings for cache and main memory hits. Type-2 
represents the best method and usual manner of full memory 
execution. It employs one-level space blocking for cache hits. 
Type-2 takes 616 sec, which is fastest, when it runs on 128 GiB 
of memory; however, it takes 7,582 sec when it runs on 32 GiB 
of memory. Type-1 with temporal blocking takes 729 sec when 
running on 128GiB. This is because of temporal blocking 
overhead, redundant calculations and extra data space. Type-1 
without temporal blocking performs only two-level space 
blocking. It takes 631 sec, which is slightly longer than the best 
time, 616 sec, because of redundant spatial blocking. When it 
runs on 32 GiB of memory, it takes 15,669 sec, because it 
ignores locality access for flash. Finally, Type-1 with temporal 
blocking, our proposed method, takes 1,163 sec on a 32-GiB 
memory. It only takes1.8 times longer than the best time, 
which is obtained by using Type-2 on full memory.  

 

 
Fig. 18.  Core times of 2 types of algorithms on various kernels  

 

 Fig. 20 and Fig. 21 show the swap device I/O bandwidth 
profiles when using the proposed algorithm (Type-1 with 
temporal blocking, blocking size (bt) is 8 time-steps) and the 
standard algorithm (Type-2 without temporal blocking, bt is 1) 
on 32 GiB of memory, respectively. They show the first 16 
time steps of a 7-point stencil computation. The first part, 
where the write operation is dominant, is the data initialization 
part. In our algorithm, a higher read bandwidth is maintained at 
every sub-block calculation and the execution is completed 
sooner. Read corresponds to moving data from the domain 
buffer to the block buffer for temporal blocking. Write 
corresponds to writing the calculated data in the block buffer to 
the domain buffer. We can see that the same pattern is repeated 
16 times in Fig. 19. One repeated pattern corresponds to one 
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sub-block calculation. In this experiment, the domain is 
divided into eight sub-blocks, and one sub-block calculation 
includes 8-time-step updates of the data in sub-block buffer. 
The regions with zero bandwidth in Fig. 19 correspond to sub-
block calculation parts.  On the other hand, Type-2 in Fig. 20 
shows a lower bandwidth profile and takes longer than Type-1 
in Fig. 19. Its total amount of write data is 1.67 time larger than 
that of Type-1. 

    
Fig. 19. Swap Device I/O bandwidth for stencil with 2-level temporal 

blocking (2048 x 2048 x 1024 double 64 GB+, 16 ite. one socket, 8 threads). 

 
Fig. 20. Swap Device I/O bandwidth for stencil without temporal blocking, 2-
level space blocking (2048 x 2048 x 1024 double 64 GB+, 16 ite. one socket, 

8 threads). 

C. Varing Problem size for Fixed Physical Memory size  
 Our next experiment measures performance by fixing the 
physical memory size to 32 GiB and varying the problem size 
from 16 GiB to 512 GiB, as shown in Table V. The actual data 
size is greater than the problem size, which corresponds to the 
total size of two spatial buffers with ghost regions for temporal 
blocking. Fig. 21 shows the relative performance using two 
sets of spatial and temporal block sizes: set-1 (bx, by, bz = 
1024 x 1024 x 1024, bt = 96) and set-2 (bx, by, bz = 1024 x 
1024 x 512, bt = 128). It shows how large a problem can be 
executed given a DRAM of limited size.  

 

 

 

 

TABLE V.  PROBLEM SIZE, ACTUAL DATA SIZE AND PHYSICAL MEMORY 
RATIO  

 
 

 
Fig. 21.  7-point stencil with 2-level blocking on 32 GiB memory (temporal 
block = 96 or 128, spatial 1st block = 1024 x 1024x 1024 or 1024 x 1024 x 
512, 2nd block = 32 x 32 x 32, 256 ite. Physical mem. 32 GiB, 8 threads, 

fastswap).  

 According to Fig. 21, a 512 GiB-sized problem can run on 
a 32-GiB physical memory with an execution time nearly two 
times greater than the ordinary execution time on full memory. 
Fig. 21 shows that two sets of space block shape and temporal 
size influence the final performance. So an elaborated 
parameter tuning may gain better performance. 

D.  Performance on New kernel 3.13.0 and NUMA server 
 Our algorithm performs well on a two-socket NUMA 
server with 16 cores/2 CPUs under the fastswap. Moreover, it 
also works well under the newer kernel 3.13.0, in which the 
fastswap is now incorporated. Fig. 22 and Fig. 23 show the 
relative and absolute performance, respectively, when using a 
one-socket server under kernel 3.13.0 with 32 GiB of physical 
memory. It represents the performance of a 7-point stencil as 
well as 19-point and 27-point stencils, which include more 
calculations-per-point updates than a 7-point stencil. The 
relative performances for the calculations of a problem 16-
times larger than the physical memory are 0.49 for 7-point, 
0.65 for 19-point and 0.73 for 27-point. The performance 
depends on the ratio of calculation to the amount of memory 
access per iterative update. Fig. 24 and Fig. 25 show the case 
of 16 threads in a two-socket NUMA server listed in Table I.  
The relative performance is poorer than that shown in Fig. 22, 
but their absolute performance gains are better than those of 
one-socket server. In Fig. 24, 1 TiB problem of 27-point stencil  
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Fig. 22. Relative Effective Performance: 7-point, 19-point and 27-point stencil 
with 2-level blocking on 32 GiB memory (temporal block = 128, 1st spatial 

block = 1024 x 1024x 512 or 1024 x 512 x 512, 2nd spatial block = 32 x 32 x 
32, 256 ite.  32 GiB, 8 threads, one-socket server). 

 

Fig. 23. Effective Performance: 7-point, 19-point and 27-point stencil with 2-
level blocking on 32 GiB memory (temporal block = 128, 1st spatial block = 
1024 x 1024x 512 or 1024 x 512 x 512, 2nd spatial block = 32 x 32 x 32, 256 

ite.  32 GiB, 8 threads, one-socket server).  

 

Fig. 24. Relative Effective Performance: 7-point, 19-point and 27-point stencil 
with 2-level blocking on 32 GiB memory (temporal block = 128, 1st spatial 

block = 1024 x 1024x 512 or 1024 x 512 x 512, 2nd spatial block = 32 x 32 x 
32, 256 ite.  32 GiB, 16 threads, two-socket server) 

 

Fig. 25. Effective Performance: 7-point, 19-point and 27-point stencil with 2-
level blocking on 32 GiB memory (temporal block = 128, spatial 1st spatial 

block = 1024 x 1024x 512 or 1024 x 512 x 512, 2nd spatial block = 32 x 32 x 
32, 256 ite.  32 GiB, 16 threads, two-socket server). 

VII. RELATED WORKS 
 Temporal blocking optimizations is not a new idea, but has 
mainly been applied thus far to cache and main memory tiers, 
the host memory and the graphics processing unit (GPU) 
memory [13][14][15] tiers, and to a local node and remote 
nodes in a cluster [12], in order to expedite data access by 
exploiting temporal locality. Some research in temporal 
blocking has been conducted in order to fine-tune performance 
depending on the cache, the non-uniform memory access 
(NUMA)-memory and multicore-CPU architectures 
[10][11][12]. Other studies have been conducted to generate 
general performance models and/or auto-tuning mechanisms 
independent of specific architectural parameters [16][17]. 
These studies aim to compensate for the latency gap between 
fast memories, like DRAM and cache. However, the gap 
between them is rather small compared to that between DRAM 
and flash. Thus, such techniques cannot be used directly for the 
tier between DRAM and flash. Our proposed algorithm in this 
preliminary evaluation is rather simple, but we believe it is the 
first attempt at applying temporal blocking optimization to the 
tier between DRAM and flash SSD, which is usually invoked 
through file I/O from applications.  

 Graph processing also employs memory-aware tuning from 
an application perspective in order to use a flash SSD as slow 
memory [18][19][20]. The breadth-first search (BFS) graph 
traversal found in Graph 500 [21] is a typical example. To 
process large amount of graph data, flash SSDs are used for the 
devices to partially offload the graph data. In contrast to stencil 
computations, graph processing has irregular memory access 
and low access locality. On the other hand, the data in graph 
processing can be categorized into a few groups, according to 
their attributes, such as access frequency and the manner of 
usage in each processing phase, dominated operation, read or 
write, the impact factor on the total performance, etc. The 
method employed here is highly tuned data partition and 
arrangement on flash and main memory for each processing 
phase, by using the knowledge of the data attributes, e.g. some 
parts of the graph data are rarely accessed. These methods are 
not adequate for general stencil computations, because all data 
are accessed uniformly and repeatedly and cannot be 
categorized to multiple types according to a different manner 
of use. However, more complex stencil computations that use 
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multiple processing phases, and static and dynamic data 
arrangement using knowledge of data attributes will be 
effective. 

 In using flash SSD as memory, the I/O bottleneck caused 
by the Linux OS kernel is one of the biggest difficulties. It 
come from the overhead due to file systems, page caching, 
swap systems and memory and process space management. In 
stencil computation that uses flash as memory, there remains 
much room to accelerate performance by fine-tuning  
applications and by advances in OS kernel. 

VIII. CONCLUSIONS 
 In this paper, we investigated the potential of flash SSD as 
large and slow memory for stencil computations, focusing on 
the case where a flash is used as swap device. Our study 
revealed that the fastswap patched kernel 3.6.0 yields better 
swap performance than kernel 2.6.32 of CentOS6.4 for stencil 
computations, but using a PCIe-based flash as a slow and large 
memory is not sufficient. We thus proposed a locality-aware, 
out-of-core computation algorithm using data structure 
blocking techniques on stencil computation to bridge the 
DRAM-flash latency divide. Our novel application of 
hierarchical temporal blocking optimization on stencil 
computation with a flash SSD performs satisfactorily for 
practical use. We find that 7-point and 27-point stencil 
computations for a 1-TiB problem (32 times that of the 
DRAM) using only a 32 GiB of DRAM and a flash SSD, in 
Mflops attain 24% and 47%, respectively, of the performance 
achieved in execution using only DRAM. There remains the 
possibility of achieving even better performance through more 
elaborate tuning, but our result nonetheless shows the potential 
and viability of flash SSD as large and slow memory.  

 We are currently evaluating the use of flash with a file map 
interface, not using it as a swap device. Our plan for future 
work includes automatic tuning for temporal and spatial 
blocking parameters for flash SSDs. We also intend to 
investigate the application of locality-aware algorithms to other 
high-performance computing applications. Our algorithm is not 
limited to the single tier between flash SSDs and DRAM, but 
extends to the hybrid implementation on other multiple 
memory tiers, e.g., GPU memory, host memory and flash SSDs.  
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