
An Evaluation of the Potential of Flash SSD as Large
and Slow Memory for Stencil Computations

Hiroko Midorikawa, Hideyuki Tan
Department of Computer and Information Science

Seikei University, JST CREST
Tokyo, Japan

midori@st.seikei.ac.jp

Toshio Endo
Global Scientific Information and Computing Center

Tokyo Institute of Technology, JST CREST
Tokyo, Japan

endo@is.titech.ac.jp

Abstract—This paper investigates the potential of flash as a large
and slow memory behind dynamic random-access memory
(DRAM) for stencil computation, which is one of the most
common and important computation kernels in various scientific
and engineering simulations. We evaluate the performance of a
fastswap kernel, which was recently incorporated into Linux, in
stencil computation using flash as a swap device. Moreover, we
propose a locality-aware, hierarchical out-of-core computation
algorithm by employing data structure blocking techniques in
stencil computations to bridge the DRAM-flash latency divide.
We find that 7-point and 27-point stencil computations for a 1-
TiB problem size (32 times that of the DRAM), using only a 32-
GiB DRAM and a flash solid-state drive (SSD), in Mflops attain
24% and 47%, respectively, of the performance achieved in
execution using only DRAM.

Keywords—Non-volatile memory (NVM); flash memory; SSD;
memory hierarchy; temporal blocking; stencil computation; slow
memory; access locality; locality-aware.

I. INTRODUCTION
 Stencil computation is one of the most popular and
important types of processing in various scientific and
engineering simulations. It performs iterative calculations on a
limited data set, typically the nearest neighbor data. It sweeps
the entire data – e.g., three-dimensional (3D) physical data
space – and updates them at each time step. Fig. 1 shows a
typical stencil computation for a 3D data grid – a 7-point
stencil computation using the six nearest neighbor points and a
19-point stencil computation using the 18 nearest neighbor
points.

Fig. 1. 7-point and 19-point stencil calculations on 3D data.

 Like most scientific computation, stencil computation often
requires a large memory to tackle big-sized problems or for
higher resolution data analysis. However, there is a limit to the
extent to which dynamic random access memory (DRAM) can
be increased in main memory, because there is a limited
number of memory slots on server boards, limited power

consumption, and other resource limitations. The most direct
and the traditional way to use data larger than the size of the
physical memory is through virtual memory system in an
operating system (OS), where the program implicitly uses a
swap device instead of the main memory. However, in modern
high-performance computing, it is common practice to avoid
paging to a swap device that is prohibitively slow with a hard
disk drive (HDD). The swap system in an OS kernel, which
was originally designed for slow HDDs and small memory,
and has not been significantly upgraded for a long time. This is
a reason for why paging to a swap device becomes obsolete in
high-performance computing.

 On the other hand, the advent of new non-volatile
memories (NVMs) influences not only the traditional memory
hierarchy, but also the basic idea of memory read/write and file
input/output (IO) in traditional programming models [1]. Many
kinds of NVMs, such as flash memory, Resistive Random-
Access Memory (ReRAM), Phase-Change Memory (PCM)
and Magnetoresistive RAM (MRAM) are being extensively
researched and developed nowadays. Of these NVMs, flash
memory is already widely available to end-users. Its access
time is not as short as that of DRAM, but it provides a much
greater capacity at a lower cost and with less power
consumption. It is already used as a front-end cache in large
hybrid storage systems with HDDs and an intermediate tier
between the DRAM memory and the HDDs. However, in the
most cases, a flash is still employed as a storage device and
used through file input/output (IO) function calls from
applications. With regard to power consumption, cost and
space, flash memory is a natural choice as a DRAM extension
to the main memory.

 There are several options in the use of flash solid state
drives (SSD) as memory, e.g., using a file memory map
mechanism with the existing mmap() function in Unix, or using
new memory allocation functions specially designed for flash
SSDs, such as SSDAlloc() [4][5]. Of these, the most convenient
and transparent way for users is to use a flash SSD implicitly
as a swap device under the virtual memory system of the OS.
Two improvements have recently been made in use of flash
SSDs as a swap device. One is the development of Peripheral
Component Interconnect Express (PCIe) bus-connected flash
SSDs [2][3]. The access latency levels of these are several
hundred times lower than those of HDDs. The other
improvement is the introduction of a revised swap system for

the OS kernel: fastswap [6][7][8]. It is designed for high-speed
swap devices, such as a flash SSD.

The access latency of PCIe-based flash SSDs is much smaller
than that of HDDs, but its latency level is several hundred to a
thousand times greater than the latency of DRAMs, as shown
in Fig. 1. The gap in latency between DRAM and flash SSD is
much larger than that between the level-3 (L3) cache and main
memory. The L3 cache is only three to 10 times faster than the
main memory. Thus, the large latency gap between DRAM and
flash SSD makes it difficult to use the latter as a main memory
extension for applications.

Fig. 2. Latency in various devices.

 In this backdrop, we first investigate several aspects of
flash SSDs as a main memory extension in the new swap
kernels. We then design and introduce a locality-aware
algorithm to a stencil computation. The stencil computation has
desirable levels of spatial and temporal locality in data access.
A standard optimization procedure such as spatial blocking is
usually applied to obtain optimal spatial locality in memory
access. Moreover, temporal blocking optimization is also
applicable to regular data access patterns in iterative update
procedures. Temporal blocking involves updates of several
time steps for a local small block before proceeding to the next
block. It boosts data access speed by exploiting temporal
locality. In this paper, we apply this optimization to the DRAM
and flash SSD tiers in stencil computations and investigate the
potential of flash SSD as a large and slow memory for stencil
computations.

Our contributions are summarized as follows:

l The basic performance of a PCIe-based flash SSD as
a swap device is investigated under the widely used
conventional kernel and compared with a HDD and
an ordinary flash SSD. Moreover, the impact of the
fastswap kernel in using a PCIe-based flash SSD is
evaluated for the STREAM benchmark [9] and for
stencil computations.

l Under the fastswap kernel, a hierarchical out-of-core
computation algorithm is newly designed and applied
in a stencil computation to bridge the DRAM-flash
latency divide. It performs sufficiently well for
practical use, thus exhibiting the potential of a flash
SSD as slow and large memory.

 In section II, we conduct preliminary performance
evaluations by comparing PCIe-based flash SSD as a swap
device with a HDD and a conventional flash SSD through
STREAM benchmark [9]. In section III, we evaluate the effect
of the fastswap kernel on a PCIe-based flash SSD for
STREAM benchmark and stencil computations. In section IV,

we propose a spatial and temporal blocking optimization
algorithm, which designed for the memory tier of the DRAM
and flash. Section V presents a preliminary parameter tuning
for the temporal blocking for a flash SSD. In Section VI, we
test the performance of stencil computing with multi-level
optimization, temporal and spatial blocking, when using flash
SSD as slow memory. In section VII, we outline our
conclusions and directions for future work.

II. SWAP DEVICE PERFORMANCE UNDER TRADITIONAL
KERNEL

 In this section, we investigate the basic performance of
PCIe-based flash SSDs as a swap device in comparison with a
serial advanced technology attachment (SATA)-based HDD
and a SATA-based flash SSD under the conventional CentOS6
(kernel 2.6.32). The experimental setting is shown in Table I.

TABLE I. EXPERIMENTAL ENVIRONMENT 1

Fig. 3 compares the execution times of the STREAM
benchmark [9] in three cases: 1) using SATA3-baed HDD, 2)
using traditional SATA-based flash SSD, and 3) using PCIe-
based flash device (FusionIO ioDrive2 (ioD)) [2], as a swap
device. This experiment is conducted on a fixed-size physical
memory of 32 GiB with a varying number of elements in
arrays used in the STREAM benchmark. STREAM is designed
to measure the bandwidth at each level of the memory
hierarchy by changing the size of arrays used inside. It uses
three arrays in four calculation types (COPY: a(i) = b(i),
SCALE: a(i) = q × b(i), SUM: a(i) = b(i) + c(i), TRIAD: a(i) =
b(i) + q × c(i)) . It scans entire arrays sequentially for each
calculation. Thus, its memory access locality is low and
floating operations take up a small fraction of the entire
execution time.

 The horizontal axis in Fig.3 represents a physical memory
ratio, the ratio of used physical memory to the program’s
virtual size. The drop in the physical memory ratio from 100%
to 24.5% on the horizontal axis corresponds to the virtual
memory size of the array data from 2.3 GiB to 109.9 GiB. The
vertical axis represents the relative execution time of STREAM
data running on the physical memory. These are individually
normalized by the time taken for the execution of each set of
data using the full 128-GiB memory. The leftmost line
represents the case where a HDD is used as a swap device,
which significantly increases the execution time as the array
size increases. Processing 1,600M array elements,
corresponding to 37GiB, on a 32-GiB physical memory server
takes about six hours (21,440 s). The original execution time

1ns� 1μs� 10μs� 100μs� 1ms� 100ms�10ms�10ns� 100ns�

HDD�
PCIe-

Flash-SSD�
MainMem-
DRAM-

SATA-
Flash-SSD�

Cache-
SRAM-

File-IO-Memory-R/W-
R/W-Seman?c�

New--
NVM�

CPU Xeon�E5*2687W003.10GHz0x020(16cores)

Memory
320*01280GiB00(Max0Total0Mem:0128GiB)

8GiB(DDR301600MHz0ECC0Reg)0x016

�OS CentOS6��2.6.32*279.14.1.el6.x86_64�

Compiler gcc04.4.6��*O3

SwapDevice � ioD�/�SSD00/0000HDD

! Product capacity Interface
ioD ioDrive2!MLC!(FusionIO) 1.2TB PCIe�2.0!x!4
SSD A1!SSD!(innodisk) 240GB SATA3
HDD !WD1003FBYXL0(WDC) 1TB SATA

using full memory is only 147 sec. For the same amount of
processing, SSD takes 3.3 hours (12,150 sec) whereas the ioD
takes 1.7 hours (6,381 sec). The HDD is prohibitively slow, but
ioD relative time saturated to 70–94 times larger value
compared to on-memory processing time. Fig. 4 shows the
relative execution times of arrays 32GiB and 37GiB in size,
normalized by the execution times on full memory. Even when
processing a 32-GiB array, the process cannot use all the
physical memory, and thus execution times rapidly increase.

Fig. 3. STREAM: Relative time for data larger than physical memory size

(32 GiB, 1 thread, CentOS6 kernel 2.6.32).

Fig. 4. Relative times of STREAM, with 10-iterations for array data size
32.0GB and 36.6GB on 32 GiB physical memory, 1 thread, CentOS6 kernel

2.6.32

III. THE IMPACT OF FASTSWAP KERNEL PERFORMANCE
 In this section, the impact of the fastswap kernel in using a
PCIe-based flash SSD is evaluated. Our evaluation uses
ioDrive2 (ioD) [2], as swap devices for three Linux kernels –
2.6.32 (CentOS6), 3.6.0 and fastswap, which is the patched
version of 3.6.0 incorporated with nvm-fastswap [7][8]. The
experimental environment is shown in Table II.

TABLE II. EXPERIMENTAL ENVIRONMENT 2

A. STREAM benchmark under Fast Swap and other Kernels
 The performances of STREAM benchmark under the three
kernels are investigated. Fig. 5 and Fig. 6 show the execution
time and the average bandwidth, when the size of STREAM
array is 36.6GiB, 1600M elements, and physical memory size
is 32GiB. The measured values of STREAM sometimes
fluctuate when a swap daemon is running, but kernel 3.6.0 has
a poor performance for multi threads executions in this
experiment.

Fig. 5. STREAM Performance on various kernels, 1600M elements, 10

iterations, 1-16 threads, ioDrive2, two-socket server in Table I

B. A Stencil Computation under Fast Swap and other Kernels
 We now evaluate the stencil computations with ioD under
the three kernels. Fig. 6 shows the core execution time, which
includes iterative steps and excludes data initialization, for the
7-point stencil computation shown in Fig. 1. The 3D grid
domain size used here is 2048 x 2048 x 1024, which
corresponds to 64 GiB and is two times larger in size than
physical memory. This stencil computation employs a standard
3D-space blocking optimization to increase data access locality.
The sub-block size for a space blocking is 32 x 32 x 32. It is
the size that fits into L3 cache. In this experiment, the number
of iterations is 256. According to Fig. 6, there is not much of a
difference between the fastswap and the 3.6.0 kernel. The
execution times on 32-GiB physical memory are 12.3 times
longer than that using 128-GiB memory under the fastswap.
Although the physical memory ratio is about 50%, its
performance is not so poor compared to the STREAM case
shown in Fig. 3. This is because a stencil computation contains
more memory access locality than the STREAM benchmark.
However, the performance described above is not satisfactory
for flash memory as a main memory extension. Thus, we
introduce a temporal blocking algorithm to increase data access
locality in stencil computations.

Fig. 6. Kernel comparison of 2048x2048x1024, 7-point stencil (64GiB
problem), 256 iterations, on a 32-GiB physical memory and ioD as swap

device with madvise, 8 threads, one-socket server

0""

20""

40""

60""

80""

100""

120""

140""

160""

20%"30%"40%"50%"60%"70%"80%"90%"100%"

Re
la
1v
e"
Ex
ec
"T
im

e"

Physical"Mem"Size"/"Virtual"Mem"Size"

mallocFswap"on"ioD"
mallocFswap"on"SSD"
mallocFswap"on"HDD"

1"

69.8""

46.0""

21.7""

1"

145.5""

82.5""

43.3""

0"

20"

40"

60"

80"

100"

120"

140"

160"

on"memory" swap"on"
HDD"

swap"on"
SSD"

swap"on"
ioD"

Re
la=

ve
"Ti
m
e�

STREAM"Rela=ve"Execu=on"Time"(10ite.)"
2.6.32,"Phys"mem"32GiB"(33.5GB),"1"thread,"
"1600M"Elements""(36.6GB),"PS/VS=89.5%""
1400M"Elements""(32GB),"PS/VS=102.2%""

array"size=32GiB"

array"size=37GiB"

CPU Xeon(E5+2650(2.00GHz(x1((8cores)

Memory
32GiB(boot((((Total(memory(128GiB(()
16GiB(DDR3(1600MHz(ECC(Reg)(x(8

CentOS6(((2.6.32()

((((((3.6.0

((((((fastswap((3.6.0(+(nvm+fast+swap)

Compiler gcc(4.4.7(20120313��+O3

SwapDevice (ioDrive2((FusionIO)

�OS(kernel

0"

1000"

2000"

3000"

4000"

5000"

6000"

2.6.32" 3.6.0" fastswap"

Ex
ec
u5

on
"T
im

e"
(s
ec
)�

STREAM"Exec.Time,Phys"mem"32GiB,"
1600M"elements,"ioDrive2�
1thread" 8thread" 16thread"

0"

200"

400"

600"

800"

1,000"

1,200"

1,400"

2.6.32" 3.6.0" fastswap"

Ba
nd

w
id
th
"(M

B/
s)
�

STREAM"Bandwidth"
Phys"mem"32GB,"1600M"elemsnts"

1thread"
8thread"
16thread"

616#

7,582# 7,417#

9,572#

0#

2000#

4000#

6000#

8000#

10000#

12000#

fastswap#
2128GiB#

fastswap#
232GiB#

3.6.0#
232GiB#

2.6.32#
232GiB#

Co
re
�
Ti
m
e#
(s
ec
)#

Problem#size#(2048x2048x1024,#64GiB)#
72point#stencil#on#fastswap,Physical#mem#32GiB#or#128GiB#

IV. A LOCALITY-AWARE ALGORITHM FOR USING FLASH SSD
AS SLOW MEMORY

In this section, we introduce a locality-aware, hierarchical
out-of-core computation algorithm that uses spatial and
temporal blocking optimization. Our algorithm is incorporated
into stencil computation to bridge the large flash-DRAM
latency gap when flash is used as main memory extensions.

A. A Temporal Blocking Optimization
 Temporal blocking involves updating several time steps for
a local small block before proceeding to the next block. Here,
we use a two-dimensional grid array and 5-point stencil
computation to explain temporal blocking optimization.

 Spatial blocking optimization typically extracts spatial
access locality, and its algorithm is shown in Fig. 7. Each
spatial block computation reads grid data from the reference
area and writes results to the update area, as shown in Fig. 8.

Fig. 7. Non-blocking and spatial blocking for stencil computations

Fig. 8. Spatial blocking using two buffers: every time step, source and

destination buffers are exchenged.

In conventional stencil computation, grid data are stored in one
of two buffers – the source buffer – and data in the source
buffer are read, calculated, and written to the other buffer – the
destination buffer. After updating the 3D data, which
constitutes one time-step iteration, the source and the
destination buffers are exchanged.

Fig. 9. One temporal block computation: It advances bt time steps internally.
It reads data in reference area (bx + 2 × bt) × (by + 2 × bt) and finally updates

the data in update area: bx × by.

Fig. 10. Temporal blocking using two buffers and two block buffers.

 On the other hand, temporal blocking optimization extracts
both spatial and temporal access localities. Temporal blocking
divides the entire time space into sub-time blocks for iterative
computations. One temporal block computation updates all
grid data in a spatial block in several time steps. The number of
time-steps advanced locally is temporal block size (bt). Fig. 9
shows the example of one temporal block computation when bt
equals 2. In this case, one block computation updates data two

5"point(stencil(computa0on((
for(two"dimension(grid(domain�

Update(point(

Reference(point(

(
(

(

(

(
�

1�

2((

3(�

ny(

ny�

nx�

Non(Blocking(for(Two"dimension(grid(domain((nx(x(ny)�
�

�� �� ��

�� �� �(

	�
� �(

bx�

by�

Spa0al(Blocking(for(Two"dimensional(grid(domain((nx(x(ny)�

Each(0me(step,(
(

• Blocks(from(��to���(
((are(calculated(in(order.(

• (AJer(one(block(is(calculated,(
the(next(block(is(processed.((((

by�
�
�
�

�
�

�

�

�
�

1�
2�

nx�

ny�

by�

Block((size:((bx(x(by)�

��

Spa$al&Blocking&using&two&Buffers�

Time&step&

&T=1,&3,&5,..&

�� by�

Buffer&1:&&nx&x&ny&&
Buffer&0:&&nx&x&ny&&

bx�

by�

nx�

ny�

bx�

nx�

ny�

Update&Area&:&bx&x&by&Reference&Area:&rx&x&ry&&&

one&$me&&

step&

Source& Desnaon&

5Hpoint&stencil&&

Reference&Area:&rx&x&ry&&&

HHH>&(bx&+2)&x&(by+2)&

Update&Area&:&&

bx&x&by&

��

bx�

by�

rx�

ry� Reference&Area:&

&rx&x&ry&&&

1�

1�1�

1�

by�

bx�

ry�

rx�

One&Spa$al&Block&Computa$on�

��

bx�

by�

One$Temporal$Block$Computa2on$�

bx�

by� ��

r2x�

r2y�

Reference$Area:$r2xxr2y$$$

;;;>$(bx$+$2*(bt;1))$x$(by$+2*(bt$;1)$)$
;;;>$(bx$+$2)$x$$(by$+$2),$$whenbt=2

r2x�

r2y�
Update$Area$:$r2x$x$r2y$

bx�

by� ��

��

bx�

by�

Update$Area$:bxxby

Example$:temporal$blocking$size$bt$=$2�
r1x�

r1y�
Reference$Area:$r1xxr1y$$$
;;;>$(bx$+2*$bt)$x$(by$+2*$bt)$
;;;>$(bx$+$4)$x$(by$+$4),$$whenbt=2

;;;>$(bx$+$2*(bt;1))$x$(by$+2*(bt$;1)$)$
;;;>$(bx$+$2)$x$(by$+$2)$$whenbt=2

;;;>$(bx$+$2*(bt;2))$x$(by$+2*(bt$;2)$)$
;;;>$bx$$xby,$$whenbt=2

Internal$2me$step$$t$=2$

bt:$temporal$blocking$size�
Internal$2me$step$$t$=1$

Temporal)blocking)using)two)Buffers)and)two)Blocks�

External)
9me)step)

)T=0,)bt,)2*bt,..)

Buffer@1:))nx)x)ny))
Buffer@0:))nx)x)ny))

Update)Area):)bx)x)by)

�� by�

bx�

nx�

ny�

Reference)Area:)rx)x)ry)))

bt)9me))
steps)

Source) Des9na9on)bx�

by� ��

��

��

bx�

by�

��

Block)buffer@1:))
)rx)x)ry)))

rx:)(bx+2*bt))
ry:)(by+2*bt)))

Block)buffer@0:))
))rx)x)ry)))

rx:)(bx+2*bt))
ry:)(by+2*bt)))

)

Internal))
9me)step)
))t)=0,..,bt@1)

Final)Update)Area)
)bx)x)by)

The)First)Reference)Area)
)rx)x)ry)))

rx:)(bx+2*bt))
ry:)(by+2*bt)))

)

ghost)area�

bt�
by�

bx�

ry�

rx�

bt�
bt�

bt�

times to advance two time steps, before proceeding to the next
block computation. Every temporal blocking update requires a
larger update area than the original spatial block size, in order
to locally advance the time step. Thus, another two block
buffers have to be prepared in addition to the two buffers, as
shown in Fig. 10. Using these two block buffers, one temporal
blocking computation, bt-times updates , is carried out. After
one temporal block computation is finished, the result in the
block buffer is copied back to a destination buffer.

B. A Temporal Blocking Algorithm for DRAM and Flash
 The temporal blocking algorithm of flash SSD and the
memory is shown in Fig. 11 and Fig. 12. In this algorithm, two
block buffers are prepared in addition to two 3D data buffers.
The data buffers are divided into several 3D blocks. In the first
iteration, one block part of the buffer data – e.g., Buffer-0 – is
calculated as source data, and the result data are written to a
destination block buffer – e.g., Block-0. In the second iteration,
the source data in Block-0 are calculated, and updated data are
written to the other block buffer – Block-1. In all iterations
except the first and the last, the two block buffers are used in
updating calculations by exchanging source and destination. At
the final iteration, the block buffer written to last becomes the
source buffer, while the other data buffer, Buffer-1, becomes
the destination buffer.

Fig. 11. Calculating data flow in temporal blocking for flash and DRAM tiers.

 In this experiment, two 3D data buffers and blocks are
allocated by malloc() with MADV_SEQUENTIAL madvise().
The size of the data is larger than that of the DRAM memory,
because of which most of the data are swapped out to a swap
device – the flash SSD. When a program accesses the data in a
swapped-out page, a swap daemon swaps in the required page
from the swap device. On the other hand, block buffers are
fixed on the DRAM memory by mlock() to prevent them from
swapping out to a swap device. At the first and last iterations,
update calculations access the buffer data, which are supposed
to exist in the flash SSD. However, in the remaining iterations,
the calculations only use data on the block buffers in the
DRAM. Actual block buffer sizes are larger than the
subdomain sizes – bx, by, and bz – shown in Fig. 12. They

have extra ghost regions on both sides for each dimension in
3D for temporal blocking. The size along the x-axis becomes
bx + 2 × bt when the temporal block size is bt. This algorithm
is called a one-level temporal blocking algorithm in this paper.

Fig. 12. 1-level temporal blocking algorithm: pseudo codes for a 3D domain.

V. PRELIMINARY PARAMETER INVESTIGATION OF
TEMPORAL BLOCKING FOR FLASH

 In temporal blocking for stencil computations, there is a
tradeoff between slow memory access and redundant
calculation overhead for ghost areas, the size of which varies
with the temporal block size. There are other tuning parameters,
such as spatial blocking size versus temporal blocking size
under limited DRAM memory. In this paper, using flash as
slow memory is the biggest factor affecting temporal blocking
for a stencil computation in comparison with other factors such
as caches, NUMA memory and CPU architectures.
Incorporating various levels and kinds of parameter tuning
dependent on the underlining architecture generates a large
parameter space to sweep, which makes results more specific
and, hence, complex to analyze. Thus, in this experiment, we
only apply basic parameter tuning to temporal blocking.

TABLE III. EXPERIMENTAL ENVIRONMENT 3

 To find adequate temporal and spatial blocking parameters
for stencil computation on flash, a 7-point stencil is used. The
experiment is performed using ioD under fastswap, as shown
in Table III. The domain of a stencil computation is 3D 2048 x
2048 x 1024 double data. The total program size becomes

Buffer&1�Buffer&0�

t=0�

Ini.al1data1set�

Block&111
buffer�

t1=2,14,16,…�

t1=11,13,15,…1�

t=1bt&111
(bt:1odd1number1case)�t=1bt&1�

1Path1without11
temporal11blocking�

1Path1for11
temporal1
blocking�

Lock1on1DRAM111
Main1Memory�

On1Swap1Device1(1Flash1SSD)1or1Main1Memory�

Temporal1block1size:1bt�

Buffer1size:1nx,1ny,1nz1

Spa.al1block1size:11
bx,1by,1bz1

Block&011
buffer�

Sub$%me$
$$$Loop:$bt�

Time$loop$
$for($T$=$0;T<Nt;T+=bt)�

Stencil$core$calcula%on$$
using$BlockA0$and$BlockA1�

Temporal$block$loop$
$for($t$=$0;t<bt;t++$)�

Ini%alize$domain:$BufferA0�

Separate$domain$$
toasubAdomain:$

Spa%al$blocking$

(bx,$by,$bz)$

�

Separate$Time$steps$
to$subA%me$step:$

Temporal$blocking$

bt$

�
Time$
$Loop�Domain$Space$loop$

for(Z=$1;$Z$<$nz$;$Z$+=$bz)$

for($Y=$1;Y<ny;Y+=$by)�
for(X=$1;$X$<$nx$;$X$+=$bx)�

Sub$space$block$loop$
Extra$ghost$area:g=btAtA1

for$(z$=ZA$g;$z$<$Z$+$bz+g;$z++)$

for$(y$=YA$g;$y$<$Y$+$by$+$g$;$y++)�
for$(x$=XA$g;$x$<$X$+$bx$+$g;$$x++)�

Finalize�

Space$
Loop�

Sub$domain$
Space$Loop�

Calcula%onisdone$
with$Block$buffers$

lockedonDRAM�

CopysubdomaininBufferto
BlockA0$$$(virtually)�

Copy$BlockA0/1$sub$domain$
resulttoOther$Buffer$$$(virtually)�

$Domain$($nx,$ny,$nz)$
Buffer$(nx+1$,ny+1,$nz+1)$

$Block$buffer$
(bx+2bt$,by+2bt,bz+2bt)$

with$ghost$bt$

CPU Xeon	
 E5-­‐2650	
 2.00GHz	
 x1socket	
 (8cores)
Memory 128GiB,	
 	
 	
 16GiB(DDR3	
 1600MHz	
 ECC	
 Reg)	
 x	
 8
　OS	
 kernel 	
 	
 	
 	
 	
 	
 fastswap	
 (3.6.0	
 +	
 nvm-­‐fast-­‐swap)
SwapDevice 	
 ioDrive2	
 (FusionIO)

larger than 64 GiB because it requires two spatial block buffers
with an extra ghost area depending on temporal blocking size.

A. Space Block Size vs. Temporal Block Size
 First, several temporal and spatial blocking size
combinations are investigated on a 128-GiB full memory
execution. Fig. 13 shows an effective Mflops, calculated by the
measured core computation time, the amount of data update
and the number of floating operations per data update. Each
line represents subdomain spatial size, from 32 x 32 x 32 to
1024 x 1024 x 1024. This clearly shows the tradeoff between
spatial and temporal block sizes. These parameter sets boost
the performance by 40%-50% more than the method that uses
only spatial blocking, corresponding to the leftmost point in
Fig. 13.

Fig. 13. Spatial block size vs. temporal block size on full memory (128GiB)
7-point stencil (2048 x 2048 x 1024 double 64 GB+, 256 item. 8 threads).

Fig. 14. Spatial block size vs. temporal block size on limited memory (32GiB)

and flash 7-point stencil (2048 x 2048 x 1024 double 64 GB+, 256 item. 8
threads).

 Following this, the same stencil program is evaluated on a
32-GiB physical memory, which corresponds to half of the
problem size. The experiment using three spatial blocking sizes
is shown in Fig. 14. The spatial size 1024 x 1024 x1024 seems
to enhance performance for temporal size larger than 128 time-
steps. However, the total buffer and block size with a temporal
block size of 256 is 118 GiB, and the performance sharply
drops because of the lack of the physical memory, as shown in
Fig.14. As a result, the best performance parameter set for this

problem size with 256 iterations is a spatial block size of1024 x
1024 x 1024 and a temporal block size of128 time steps.

 In the flash and DRAM tiers, the cost of redundant
calculations caused by temporal blocking is small compared to
the access overhead due to flash. The lesson here is that the
biggest spatial and temporal block size combination that can fit
the available physical memory is preferable for temporal
blocking for DRAM and a flash.

B. Multi-level Blocking: Temporal and Spatial Blocking
 According to our previous parameter tuning result, a large
spatial block size, such as 1024 x 1024 x 1024, is preferable.
However, from the perspective of cache utilization, the
straightforward calculation of 1024 x 1024 x 1024 is inefficient.
Hence, another spatial blocking – a 32 x 32 x 32 sub-block for
the 1024 x 1024 x 1024 – is introduced as a two-level temporal
and space blocking. Fig. 15 shows execution times with full
memory (128 GiB). Its relative times are normalized by the
time taken by a one-level blocking with eight threads. Using
eight threads, the two-level blocking is 2.2 times faster than
one-level blocking. Thus, this two-level algorithm is used in
the following experiments.

Fig. 15. One-level blocking vs. two-level blocking on full memory (128GiB),

7-point stencil (2048 x 2048 x 1024 double 64 GB+, 256 item. 8 threads),
(temporal block size = 128, spatial: 1st block size = 1024, 2nd block size = 32).

VI. PERFORMANCE OF HIERARCHICAL BLOCKING FOR
STENCIL COMPUTATIONS ON FLASH

 In this section, we measure the performance of a two-level
blocking algorithm with multiple threads for a stencil
computation using limited memory and flash SSD. In this two-
level blocking algorithm, temporal blocking is applied to the
DRAM main memory and the flash tier, whereas the second
level spatial blocking is applied to the cache and the main
memory tier. A set of spatial and temporal blocking sizes is
selected by using our results in the previous section by
choosing the largest power of two as the spatial block size that
fits in the physical memory, and the maximum temporal block
size from the available combinations.

A. Varing Physical Memory size for Fixed Problem size
 First, we investigated the performance of the two-level
blocking algorithm with eight threads by fixing the problem
size to a 2048 x 2048 x 1024 stencil problem and varying the
physical memory sizes – ranging from 128 GiB to 8 GiB – in
the server, as shown in Table III. Fig. 16 shows the relative

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

16000"

1" 2" 4" 8" 16" 32" 64" 128"256"

Ef
ec
%v

e'
M
flo

ps
�

Temporal'block'Size'

2048x2048x1024"(64GiB+),"256"ite."
physical""mem=128GiB,"8"threads"�

1024x1024"
512x512"
256x256"
128x128"
64x64"
32x32"

0"
500"
1000"
1500"
2000"
2500"
3000"
3500"
4000"
4500"
5000"

8" 16" 32" 64" 128" 256"

Eff
ec
.v
e"
M
flo

ps
�

Temporal"block"Size"

2048x2048x1024"(64GiB+),"256"ite."
physical""mem=32GiB,"8"threads"�

1024x1024"
512x512"
256x256"

2.89%

1.51%

1.02% 1.00%

2.88%

1.44%

0.82%

0.44%

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

1% 2% 4% 8%

Re
rla

0v
e%
Ti
m
e%
(s
ec
)�

Thread�

Stencil%(2048x2048x1024,%64GiB+),%%%
128%ite.%%core%0me%on%%memory%

1Flevel%Temporal%blocking%

2Flevel%temporal%and%
spa0al%blocking%

execution times in both cases for 7-point and 19-point stencil
computations. Fig. 17 shows effective Flops. The horizontal
axis represents the physical memory size used for the
experiment. The actual program data size is larger than the
problem size as shown in Table IV. For example, at the point
in Fig. 16 where the physical memory is 64 GiB, the actual
program data size is 95.5 GiB and the actual physical memory
ratio is 0.67 (= 64/95.5). At a physical memory size is 16 GiB,
the execution times for 64GiB problem are 2.18 and 1.65 times
higher, respectively, than ordinary full memory execution. The
19-point computation has more calculations per memory and
cache access than the 7-point computation. Thus, the
degradation in performance is smaller even with limited
memory.

Fig. 16. Relative time for stencil with 2-level temporal blocking (2048 x 2048

x 1024 double 64 GB+, 256 ite. one-socket server, 8 threads).

Fig. 17. Effective MFLOPS of stencil with 2-level temporal blocking (2048 x

2048 x 1024 double 64 GB+, 256 ite. one-socket server, 8 threads).

TABLE IV. PROBLEM SIZE AND ACTUAL DATA SIZE AND PHYSICAL
MEMORY RATIO

B. Varing Blocking Optimizations for Fixed Problem
 To evaluate the effectiveness of the temporal blocking
algorithm, we compare two types of executions for 7-point
stencil computation for a 64-GiB problem, as shown in Fig. 18.
Type-1 represents the temporal blocking algorithm designed for
32 GiB memory. It employs two-level blocking, temporal and
spatial blockings for cache and main memory hits. Type-2
represents the best method and usual manner of full memory
execution. It employs one-level space blocking for cache hits.
Type-2 takes 616 sec, which is fastest, when it runs on 128 GiB
of memory; however, it takes 7,582 sec when it runs on 32 GiB
of memory. Type-1 with temporal blocking takes 729 sec when
running on 128GiB. This is because of temporal blocking
overhead, redundant calculations and extra data space. Type-1
without temporal blocking performs only two-level space
blocking. It takes 631 sec, which is slightly longer than the best
time, 616 sec, because of redundant spatial blocking. When it
runs on 32 GiB of memory, it takes 15,669 sec, because it
ignores locality access for flash. Finally, Type-1 with temporal
blocking, our proposed method, takes 1,163 sec on a 32-GiB
memory. It only takes1.8 times longer than the best time,
which is obtained by using Type-2 on full memory.

Fig. 18. Core times of 2 types of algorithms on various kernels

 Fig. 20 and Fig. 21 show the swap device I/O bandwidth
profiles when using the proposed algorithm (Type-1 with
temporal blocking, blocking size (bt) is 8 time-steps) and the
standard algorithm (Type-2 without temporal blocking, bt is 1)
on 32 GiB of memory, respectively. They show the first 16
time steps of a 7-point stencil computation. The first part,
where the write operation is dominant, is the data initialization
part. In our algorithm, a higher read bandwidth is maintained at
every sub-block calculation and the execution is completed
sooner. Read corresponds to moving data from the domain
buffer to the block buffer for temporal blocking. Write
corresponds to writing the calculated data in the block buffer to
the domain buffer. We can see that the same pattern is repeated
16 times in Fig. 19. One repeated pattern corresponds to one

1.00$ 1.18$
1.41$

1.65$

2.78$

1.00$
1.43$

1.82$
2.18$

4.15$

0.0$$
0.5$$
1.0$$
1.5$$
2.0$$
2.5$$
3.0$$
3.5$$
4.0$$
4.5$$

128$ 64$ 32$ 16$ 8$

Re
la
%v

e'
Ti
m
e�

Physical'memory'(GiB)�

Problem$Size$(2048x2048x1024$64GB+,$83GB)�
��1$socket$,8$threads�

19point$ 7point$

17,296'
16,604'

12,249'
10,495'

6,232'

17,115'

11,941'

9,407'
7,834'

4,128'

0''
2000''
4000''
6000''
8000''

10000''
12000''
14000''
16000''
18000''
20000''

128' 64' 32' 16' 8'

Eff
ec
%v

e'
M
FL
O
PS
�

Physical'memory'size'(GiB)�

'Problem''Size'(2048x2048x1024,'64GiB+,'83GB)'
�1'socket,''8'threads�

19point' 7point'

Spatial
Temporal

Problem.Size .2.Buff.Size
(GiB)

Actual
Size(GiB) Ratio

Actual
Size(GiB) Ratio

1024x1024x1024 16* 25.1 1.57 27.3 1.71
2048x1024x1024 32 59.0 1.84 50.9 1.59
2048x2048x1024 64 91.0 1.42 83.0 1.30
2048x2048x2048 128 155.2 1.21 147.1 1.15
4096x2048x2048 256 283.4 1.11 275.4 1.08
4096x4096x2048 512 539.8 1.05 531.8 1.04
4096x4096x4096 1024 1044.3 32.63

1024x1024x1024 1024x1024x512
96 128

16*:.Spatial.block.size.1024x.512x.512

616# 631# 729#

7,582#

15,669#

1,163#

0#
2000#
4000#
6000#
8000#

10000#
12000#
14000#
16000#
18000#

temporal#
blocking#

temporal#
blocking#

128GiB# 128GiB# 128GiB# 32GiB# 32GiB# 32GiB#

type#2# type#1# type#1# type#2# type#1# type#1#

Co
re
�
Ti
m
e#
(s
ec
)#

Problem#size#(2048x2048x1024,#64GiB)#
7Fpoint#stencil#on#fastswap,#Physical#mem#32GiB#or#128GiB#

type block*size
internal
block*size

temporal
*block*size

1 1024610246512 32 128*or*1
2 20486204861024 32 1

sub-block calculation. In this experiment, the domain is
divided into eight sub-blocks, and one sub-block calculation
includes 8-time-step updates of the data in sub-block buffer.
The regions with zero bandwidth in Fig. 19 correspond to sub-
block calculation parts. On the other hand, Type-2 in Fig. 20
shows a lower bandwidth profile and takes longer than Type-1
in Fig. 19. Its total amount of write data is 1.67 time larger than
that of Type-1.

Fig. 19. Swap Device I/O bandwidth for stencil with 2-level temporal

blocking (2048 x 2048 x 1024 double 64 GB+, 16 ite. one socket, 8 threads).

Fig. 20. Swap Device I/O bandwidth for stencil without temporal blocking, 2-
level space blocking (2048 x 2048 x 1024 double 64 GB+, 16 ite. one socket,

8 threads).

C. Varing Problem size for Fixed Physical Memory size
 Our next experiment measures performance by fixing the
physical memory size to 32 GiB and varying the problem size
from 16 GiB to 512 GiB, as shown in Table V. The actual data
size is greater than the problem size, which corresponds to the
total size of two spatial buffers with ghost regions for temporal
blocking. Fig. 21 shows the relative performance using two
sets of spatial and temporal block sizes: set-1 (bx, by, bz =
1024 x 1024 x 1024, bt = 96) and set-2 (bx, by, bz = 1024 x
1024 x 512, bt = 128). It shows how large a problem can be
executed given a DRAM of limited size.

TABLE V. PROBLEM SIZE, ACTUAL DATA SIZE AND PHYSICAL MEMORY
RATIO

Fig. 21. 7-point stencil with 2-level blocking on 32 GiB memory (temporal
block = 96 or 128, spatial 1st block = 1024 x 1024x 1024 or 1024 x 1024 x
512, 2nd block = 32 x 32 x 32, 256 ite. Physical mem. 32 GiB, 8 threads,

fastswap).

 According to Fig. 21, a 512 GiB-sized problem can run on
a 32-GiB physical memory with an execution time nearly two
times greater than the ordinary execution time on full memory.
Fig. 21 shows that two sets of space block shape and temporal
size influence the final performance. So an elaborated
parameter tuning may gain better performance.

D. Performance on New kernel 3.13.0 and NUMA server
 Our algorithm performs well on a two-socket NUMA
server with 16 cores/2 CPUs under the fastswap. Moreover, it
also works well under the newer kernel 3.13.0, in which the
fastswap is now incorporated. Fig. 22 and Fig. 23 show the
relative and absolute performance, respectively, when using a
one-socket server under kernel 3.13.0 with 32 GiB of physical
memory. It represents the performance of a 7-point stencil as
well as 19-point and 27-point stencils, which include more
calculations-per-point updates than a 7-point stencil. The
relative performances for the calculations of a problem 16-
times larger than the physical memory are 0.49 for 7-point,
0.65 for 19-point and 0.73 for 27-point. The performance
depends on the ratio of calculation to the amount of memory
access per iterative update. Fig. 24 and Fig. 25 show the case
of 16 threads in a two-socket NUMA server listed in Table I.
The relative performance is poorer than that shown in Fig. 22,
but their absolute performance gains are better than those of
one-socket server. In Fig. 24, 1 TiB problem of 27-point stencil

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

0" 25
"

50
"

75
"

10
0"

12
5"

15
0"

17
5"

20
0"

22
5"

25
0"

27
5"

30
0"

32
5"

35
0"

37
5"

40
0"

42
5"

Ba
nd

wi
dt
h)(

M
B/
s)�

Execu4on)Time)(sec)�

Swap"Device"I/O"Bandwidth�

rMB/s"
wMB/s"

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

0" 36
"

72
"

10
8"

14
4"

18
0"

21
6"

25
2"

28
8"

32
4"

36
0"

39
6"

43
2"

46
8"

50
4"

54
0"

57
6"

61
2"

Bn
dw

id
th
((M

B/
s)
�

Execu3on(Time((sec)�

Swap"Device"I/O"Bandwidth�

rMB/s"
wMB/s"

Spatial
Temporal

Problem.Size .2.Buff.Size
(GiB)

Actual
Size(GiB) Ratio

Actual
Size(GiB) Ratio

1024x1024x1024 16* 25.1 1.57 27.3 1.71
2048x1024x1024 32 59.0 1.84 50.9 1.59
2048x2048x1024 64 91.0 1.42 83.0 1.30
2048x2048x2048 128 155.2 1.21 147.1 1.15
4096x2048x2048 256 283.4 1.11 275.4 1.08
4096x4096x2048 512 539.8 1.05 531.8 1.04
4096x4096x4096 1024 1044.3 32.63

1024x1024x1024 1024x1024x512
96 128

16*:.Spatial.block.size.1024x.512x.512

1.00$

0.57$ 0.55$ 0.52$ 0.50$

0.31$

0.79$

0.57$ 0.51$ 0.47$ 0.46$ 0.45$

0.00$

0.20$

0.40$

0.60$

0.80$

1.00$

1.20$

16$ 32$ 64$ 128$ 256$ 512$
Re

la
%v

e'
Eff

ec
%v

e'
M
FL
O
PS
''

'Problem'Size'(GiB)'�

$7-point$Stencil$$2level$$256ite.8threads,$$
32GiB$physical$memory�

1024x1024x1024-96bt$
1024x1024x512-128bt$

Fig. 22. Relative Effective Performance: 7-point, 19-point and 27-point stencil
with 2-level blocking on 32 GiB memory (temporal block = 128, 1st spatial

block = 1024 x 1024x 512 or 1024 x 512 x 512, 2nd spatial block = 32 x 32 x
32, 256 ite. 32 GiB, 8 threads, one-socket server).

Fig. 23. Effective Performance: 7-point, 19-point and 27-point stencil with 2-
level blocking on 32 GiB memory (temporal block = 128, 1st spatial block =
1024 x 1024x 512 or 1024 x 512 x 512, 2nd spatial block = 32 x 32 x 32, 256

ite. 32 GiB, 8 threads, one-socket server).

Fig. 24. Relative Effective Performance: 7-point, 19-point and 27-point stencil
with 2-level blocking on 32 GiB memory (temporal block = 128, 1st spatial

block = 1024 x 1024x 512 or 1024 x 512 x 512, 2nd spatial block = 32 x 32 x
32, 256 ite. 32 GiB, 16 threads, two-socket server)

Fig. 25. Effective Performance: 7-point, 19-point and 27-point stencil with 2-
level blocking on 32 GiB memory (temporal block = 128, spatial 1st spatial

block = 1024 x 1024x 512 or 1024 x 512 x 512, 2nd spatial block = 32 x 32 x
32, 256 ite. 32 GiB, 16 threads, two-socket server).

VII. RELATED WORKS
 Temporal blocking optimizations is not a new idea, but has
mainly been applied thus far to cache and main memory tiers,
the host memory and the graphics processing unit (GPU)
memory [13][14][15] tiers, and to a local node and remote
nodes in a cluster [12], in order to expedite data access by
exploiting temporal locality. Some research in temporal
blocking has been conducted in order to fine-tune performance
depending on the cache, the non-uniform memory access
(NUMA)-memory and multicore-CPU architectures
[10][11][12]. Other studies have been conducted to generate
general performance models and/or auto-tuning mechanisms
independent of specific architectural parameters [16][17].
These studies aim to compensate for the latency gap between
fast memories, like DRAM and cache. However, the gap
between them is rather small compared to that between DRAM
and flash. Thus, such techniques cannot be used directly for the
tier between DRAM and flash. Our proposed algorithm in this
preliminary evaluation is rather simple, but we believe it is the
first attempt at applying temporal blocking optimization to the
tier between DRAM and flash SSD, which is usually invoked
through file I/O from applications.

 Graph processing also employs memory-aware tuning from
an application perspective in order to use a flash SSD as slow
memory [18][19][20]. The breadth-first search (BFS) graph
traversal found in Graph 500 [21] is a typical example. To
process large amount of graph data, flash SSDs are used for the
devices to partially offload the graph data. In contrast to stencil
computations, graph processing has irregular memory access
and low access locality. On the other hand, the data in graph
processing can be categorized into a few groups, according to
their attributes, such as access frequency and the manner of
usage in each processing phase, dominated operation, read or
write, the impact factor on the total performance, etc. The
method employed here is highly tuned data partition and
arrangement on flash and main memory for each processing
phase, by using the knowledge of the data attributes, e.g. some
parts of the graph data are rarely accessed. These methods are
not adequate for general stencil computations, because all data
are accessed uniformly and repeatedly and cannot be
categorized to multiple types according to a different manner
of use. However, more complex stencil computations that use

1.00$

0.61$
0.52$ 0.49$ 0.47$ 0.49$

1.00$

0.80$
0.70$ 0.67$ 0.64$ 0.65$

1.00$ 0.89$
0.81$

0.76$ 0.73$ 0.73$

0.00$

0.20$

0.40$

0.60$

0.80$

1.00$

16$ 32$ 64$ 128$ 256$ 512$

Re
la
1v
e$
Eff

ec
1v
e$
M
FL
O
PS
$$

Problem$Size$(GiB)$

$7,$19,27point$Stencil$$2level$1me$and$space$blocking,$$256ite.$$
8$threads,$32GiB$physical$memory$(kernel$3.13.0)�

ss7p$ ss19p$ ss27p$

0"
2,000"
4,000"
6,000"
8,000"

10,000"
12,000"
14,000"
16,000"
18,000"

16" 32" 64" 128" 256" 512"

Eff
ec
%v

e'
M
FL
O
PS
''

Problem'Size'(GiB)'

"7,"19,"27"point"Stencil""2level""256ite.""
8"threads,"32GiB"physical"memory"(kernel3.13.0)�

ss7p" ss19p" ss27p"

1.00$

0.49$
0.41$ 0.37$ 0.35$ 0.34$

0.24$

1.00$

0.66$
0.57$

0.52$ 0.50$ 0.48$

0.38$

1.00$

0.75$
0.67$

0.62$ 0.59$ 0.57$
0.47$

0.00$

0.20$

0.40$

0.60$

0.80$

1.00$

16$ 32$ 64$ 128$ 256$ 512$ 1,024$

Re
la
2v
e$
Eff

ec
2v
e$
M
FL
O
PS
$$

Problem$Size$$(GB)$$$

$7,$19,27point$Stencil$$2level$2level$2meandspace$blocking,$$256ite.$$
16$threads,$32GiB$physical$memory$$(kernel$3.13.0,$$NUMA16cores)�

ss7p$ ss19p$ ss27p$

0"

5,000"

10,000"

15,000"

20,000"

25,000"

30,000"

35,000"

40,000"

16" 32" 64" 128" 256" 512" 1024"

Eff
ec
/v
e"
M
FL
O
PS
""

Problem"Size"(GiB)"

"7,"19,"27"point"Stencil""2level""256ite."16"threads,"
32GiB"physical"memory"(kernel"3.13.0)"�

ss7p" ss19p" ss27p"

multiple processing phases, and static and dynamic data
arrangement using knowledge of data attributes will be
effective.

 In using flash SSD as memory, the I/O bottleneck caused
by the Linux OS kernel is one of the biggest difficulties. It
come from the overhead due to file systems, page caching,
swap systems and memory and process space management. In
stencil computation that uses flash as memory, there remains
much room to accelerate performance by fine-tuning
applications and by advances in OS kernel.

VIII. CONCLUSIONS
 In this paper, we investigated the potential of flash SSD as
large and slow memory for stencil computations, focusing on
the case where a flash is used as swap device. Our study
revealed that the fastswap patched kernel 3.6.0 yields better
swap performance than kernel 2.6.32 of CentOS6.4 for stencil
computations, but using a PCIe-based flash as a slow and large
memory is not sufficient. We thus proposed a locality-aware,
out-of-core computation algorithm using data structure
blocking techniques on stencil computation to bridge the
DRAM-flash latency divide. Our novel application of
hierarchical temporal blocking optimization on stencil
computation with a flash SSD performs satisfactorily for
practical use. We find that 7-point and 27-point stencil
computations for a 1-TiB problem (32 times that of the
DRAM) using only a 32 GiB of DRAM and a flash SSD, in
Mflops attain 24% and 47%, respectively, of the performance
achieved in execution using only DRAM. There remains the
possibility of achieving even better performance through more
elaborate tuning, but our result nonetheless shows the potential
and viability of flash SSD as large and slow memory.

 We are currently evaluating the use of flash with a file map
interface, not using it as a swap device. Our plan for future
work includes automatic tuning for temporal and spatial
blocking parameters for flash SSDs. We also intend to
investigate the application of locality-aware algorithms to other
high-performance computing applications. Our algorithm is not
limited to the single tier between flash SSDs and DRAM, but
extends to the hybrid implementation on other multiple
memory tiers, e.g., GPU memory, host memory and flash SSDs.

REFERENCES

[1] Anirudh Badam, “How Persistent Memory Will Change Software
Systems”, IEEE Computer, pp. 45-51, Aug. 2013.

[2] ioDrive2 (FusionIO) https://www.fusionio.com/products/iodrive2/.
[3] Intel SSD910 http://www.intel.com/content/www/us/en/solid-state-

drives/solid-state-drives-910-series.html.
[4] Kshitij Sudan, Anirudh Badam and David Nellans, “NAND-Flash: Fast

Storage or Slow Memory?”, NVM Workshop 2012.
[5] A. Badam and V.S. Pai, “SSDAlloc: Hybrid SSD/RAM Memory

Management Made Easy”, Proc. 8th Usenix Symp. Networked Systems
Design and Implementation (NSDI11), Usenix, 2011,

https://www.usenix.org/legacy/events/nsdi11/tech/full_papers/Badam.pdf.
[6] Improve Linux swap for High speed Flash Storage

http://events.linuxfoundation.org/sites/events/files/lcjpcojp13_shaohua.p
df.

[7] Nisha Talagala, “Creating Flash-Aware Applications”, Flash Memory
Summit 2013,

http://www.flashmemorysummit.com/English/Collaterals/Proceedings/
2013/20130814_203B_Talagala.pdf.

[8] OpenNVM, FusionIO, http://opennvm.github.io.
[9] STREAM benchmark, http://www.streambench.org/.
[10] Shaheen, M., Strzodka, R., “NUMA Aware Iterative Stencil

Computations on Many-Core Systems ”, Parallel & Distributed
Processing Symposium (IPDPS), 2012 IEEE 26th International, DOI:
10.1109/IPDPS.2012.50, 2012 , Page(s): 461 - 473

[11] Gerhard Wellein, Georg Hager, Thomas Zeiser, Markus Wittmann and
Holger Fehske, “Efficient temporal blocking for stencil computations by
multicore-aware wavefront parallelization”, Computer Software and
Applications Conference, vol.1, pp. 579 – 586, 2009.

[12] M. Wittmann, G. Hager, and G. Wellein, “Multicore-aware parallel
temporal blocking of stencil codes for shared and distributed memory”,
Workshop on Large-Scale Parallel Processing (LSPP10), in conjunction
with IEEE IPDPS2010, 7pages, April 2010, DOI:
10.1109/IPDPSW.2010.5470813

[13] Nguyen, A. ; Satish, N. ; Chhugani, J. ; Changkyu Kim ; Dubey, P. ,
“3.5-D Blocking Optimization for Stencil Computations on Modern
CPUs and GPUs”, High Performance Computing, Networking, Storage
and Analysis (SC), 2010, DOI: 10.1109/SC.2010.2, 2010 , pp. 1 - 13

[14] Guanghao Jin, Toshio Endo and Satoshi Matsuoka, “A multi-level
optimization method for stencil computation on the domain that is
bigger than memory capacity of GPU,” Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW), 2013
IEEE 27th International, pp. 1080 - 1087 , 2013, DOI:
10.1109/IPDPSW.2013.58

[15] Guanghao Jin, Toshio Endo and Satoshi Matsuoka, “A Parallel
Optimization Method for Stencil Computation on the Domain that is
Bigger than Memory Capacity of GPUs”, IEEE Cluster2013, 2013,
10.1109/CLUSTER.2013.6702633

[16] K. Datta et al. “Stencil Computation Optimization and Auto-tuning on
State-of-the-art Multicore Architectures”, Proc. SC2008.
DOI:10.1145/1413370.1413375.

[17] M. Frigo and V. Strumpen, “Cache oblivious stencil computations”,
Proc. ICS 2005. DOI:10.1145/1088149.1088197.

[18] Van Essen, B. ; Pearce, R. ; Ames, S. ; Gokhale, M., “On the Role of
NVRAM in Data-intensive Architectures: An Evaluation”, Parallel &
Distributed Processing Symposium (IPDPS), 2012 IEEE 26th
International, 2012, DOI:10.1109/IPDPS.2012.69

[19] Pearce, R. , Gokhale, M. , Amato, N.M. , “Scaling Techniques for
Massive Scale-Free Graphs in Distributed (External) Memory”, IEEE
27th International Symposium on Parallel & Distributed Processing
(IPDPS), pp. 825 – 836, 2013, 2013, DOI: 10.1109/IPDPS.2013.72

[20] Keita Iwabuchi, Hitoshi Sato, Ryo Mizote, Yuichiro Yasui, Katsuki
Fujisawa and Satoshi Matsuoka, “Hybrid BFS Approach Using Semi-
External Memor”, International Workshop on High Performance Data
Intensive Computing (HPDIC2014), in conjunction with IEEE IPDPS.
May 2014 (to be published)

[21] Graph500, http://www.graph500.org

