
Using Flash SSDs as Main Memory Extension
with a Locality-aware Algorithm

Hiroko Midorikawa

 midori@st.seikei.ac.jp,
 Seikei University, JST-CREST, Tokyo, Japan

I. INTRODUCTION
 Most scientific computation often require a lager memory
to tackle big-sized problems and/or for higher resolution data
analysis. One of the common solutions is aggregating the
distributed memories over cluster nodes. Typically, it is
accomplished by increasing the amount of DRAM per node
and the number of nodes in one cluster. However, there is a
limit to the extent to which DRAM can be increased in main
memory, because there is a limited number of memory slots on
server boards, limited power consumption, and other resource
limitations.

 The advent of various kinds of NVM brings us a new era in
memory organizations and memory-related software [1]. It
influences not only the traditional memory hierarchy but also
the basic idea of memory read/write and file IO. It has a
potential to change traditional programming models and
application programs drastically. Of various NVMs, flash
memory is already widely available to end-users. Its access
time is not as short as that of DRAM, but it provides a much
greater capacity at a lower cost and with less power
consumption. With regard to these points, flash memory is one
of the candidates as a DRAM extension to the main memory[2].

 Recent PCIe bus-connected flash SSDs [3][4] achieve
several hundred times faster latency than HDDs, but it is about
one thousand time slower than DRAM, as shown in Fig. 1.
The gap between DRAM and flash SSD is much bigger than
the gap between L3 cache and memory, which is only 3 to 10
times difference in latency. Thus, the large latency gap
between DRAM and flash SSD makes it difficult to use the
latter as a main memory extension for applications.

Fig. 1 Access latency in various memory devices

This paper investigates the potential of PCIe flash as large
and slow memory behind DRAM for a stencil computation,
which is one of the most typical and important computation
kernels in various scientific and engineering simulations. A
locality-aware, hierarchical out-of-core computation algorithm

using data structure blocking techniques is newly applied to
the stencil computation to bridge the DRAM-Flash latency
divide. Our novel application of hierarchical temporal
blocking optimization on stencil computation with a flash
SSD performs satisfactorily for practical use. We find that 7-
point stencil computations for a 512GiB problem (16 times
bigger size than that of the DRAM) using only a 32 GiB of
DRAM and a flash SSD, in Mflops attain 87% of the
performance achieved in execution using only DRAM.

II. THE LOCALITY-AWARE ALGORITHM FOR USING FLASH SSD
AS MAIN MEMORY EXTENSION

 Stencil computation is one of the most popular and important
types of processing in various scientific and engineering
simulations. It performs iterative calculations on a limited data
set, typically the nearest neighbor data. It sweeps the entire
data – e.g., three-dimensional (3D) physical data space – and
updates them at each time step. Fig. 2 shows a typical stencil
computation for a 3D data grid – a 7-point stencil computation
using the six nearest neighbor points and a 19-point stencil
computation using the 18 nearest neighbor points.

FIG.2 7-POINT AND 19-POINT STENCIL COMPUTATIONS ON 3D DATA

Temporal blocking algorithm, which extracts not only spatial
locality but also temporal locality for iterative applications, is
newly applied to flash and DRAM memory layers for stencil
computations [6]. Typical temporal blocking algorithm for 3-
dimensional data domain is shown in Fig. 6. We introduce
three-layered data structures corresponding to Flash, DRAM,
L3-cache memory hierarchy in the algorithm to extract
memory access locality for each layer in memory hierarchy, as
shown in Fig.3.

There are several options in the use of flash SSD as memory
extension from applications [5]. Three methods are evaluated
in this experiment, (1) swap method, (2) mmap method and
(3) aio method, shown in Fig. 3. In the swap method, memory
allocation, malloc() function is used in applications and a flash
SSD is used as a swap device under the virtual memory system
of the OS. In the mmap method, a file memory map mmap()

1ns� 1μs� 10μs� 100μs� 1ms� 100ms�10ms�10ns� 100ns�

HDD�
PCIe-

Flash-SSD�
MainMem-
DRAM-

SATA-
Flash-SSD�

Cache-
SRAM-

File-IO-Memory-R/W-
R/W-Seman?c�

New--
NVM�

function is used in applications and a flash SSD is used as a
file system. In the aio method, Linux kernel asynchronous
Input/Output library functions are used in applications and a
flash SSD is used as a block device.

Fig. 4 shows relative execution times of a 7-point stencil
64GiB-problem for each method using limited DRAM, 32GiB,
and sufficient DRAM, 128GiB. aio method with temporal
blocking is most effective for the execution under limited
DRAM. With aio method, computation time for 64GiB
problem using only 32GiB of DRAM and Flash takes only 1.5
time larger than that of normal execution using sufficient
DRAM, 128GiB. Without temporal blocking algorithm, its
computation time using 32GiB DRAM takes 65.2 time larger
than the normal execution as shown in Fig. 4. Fig. 5 shows
relative effective Mflops of various-size problems using 32GiB.
In the 1TiB problem execution using only 32GiB DRAM
achieves 87% performance of normal execution using
sufficient DRAM.

 We also optimized the algorithm for NUMA systems and
found that it achieves sufficient performance in stencil
computations for using flash SSD as a main memory extension.

Fig.3 Three-layered data structure for locality extraction

 Fig.4 Relative times for various methods

 Fig. 5 Performance in various-size of problems

Fig.6 1-level temporal blocking algorithm: pseudo codes for a 3D domain.

REFERENCES
[1] Anirudh Badam, "How Persistent Memory Will Change

Software Systems", IEEE Computer ,pp45-51, Aug. 2013
[2] Kshitij Sudan, Anirudh Badam, Dvid Nellans, "NAND-Flash:

Fast Storage or Slow Memory?", NVM Workshop 2012
[3] ioDrive2 (FusionIO)

 https://www.fusionio.com/products/iodrive2/
[4] Intel SSD910

 http://www.intel.com/content/www/us/en/solid-state-
drives/solid-state-drives-910-series.html

[5] Hiroko Midorikawa, “Using a Flash as Large and Slow Memory for
Stencil Computations”, Flash Memory Summit 2014, (2014.8)
http://www.ci.seikei.ac.jp/midori/paper/20140807_301D_Mido
rikawa.pdf

[6] Hiroko Midorikawa, Hideyuki Tan and Toshio Endo:"An Evaluation of
the Potential of Flash SSD as Large and Slow Memory for Stencil
Computations", Proceedings of the 2014 International Conference on
High Performance Computing and Simulation (IEEE HPCS2014)
(ISBN 978-1-4799-5311-0), pp.268-277, 2014-7 IEEE-HPCS2014

Sub$%me$
$$$Loop:$bt�

Time$loop$
$for($T$=$0;T<Nt;T+=bt)�

Stencil$core$calcula%on$$
using$BlockA0$and$BlockA1�

Temporal$block$loop$
$for($t$=$0;t<bt;t++$)�

Ini%alize$domain:$BufferA0�

Separate$domain$$
toasubAdomain:$

Spa%al$blocking$

(bx,$by,$bz)$

�

Separate$Time$steps$
to$subA%me$step:$

Temporal$blocking$

bt$

�
Time$
$Loop�Domain$Space$loop$

for(Z=$1;$Z$<$nz$;$Z$+=$bz)$

for($Y=$1;Y<ny;Y+=$by)�
for(X=$1;$X$<$nx$;$X$+=$bx)�

Sub$space$block$loop$
Extra$ghost$area:g=btAtA1

for$(z$=ZA$g;$z$<$Z$+$bz+g;$z++)$

for$(y$=YA$g;$y$<$Y$+$by$+$g$;$y++)�
for$(x$=XA$g;$x$<$X$+$bx$+$g;$$x++)�

Finalize�

Space$
Loop�

Sub$domain$
Space$Loop�

Calcula%onisdone$
with$Block$buffers$

lockedonDRAM�

CopysubdomaininBufferto
BlockA0$$$(virtually)�

Copy$BlockA0/1$sub$domain$
resulttoOther$Buffer$$$(virtually)�

$Domain$($nx,$ny,$nz)$
Buffer$(nx+1$,ny+1,$nz+1)$

$Block$buffer$
(bx+2bt$,by+2bt,bz+2bt)$

with$ghost$bt$

