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I. INTRODUCTION 
  Most scientific computation often require a lager memory 
to tackle big-sized problems and/or for higher resolution data 
analysis. One of the common solutions is aggregating the 
distributed memories over cluster nodes. Typically, it is 
accomplished by increasing the amount of DRAM per node 
and the number of nodes in one cluster. However, there is a 
limit to the extent to which DRAM can be increased in main 
memory, because there is a limited number of memory slots on 
server boards, limited power consumption, and other resource 
limitations. 

 The advent of various kinds of NVM brings us a new era in 
memory organizations and memory-related software [1]. It 
influences not only the traditional memory hierarchy but also 
the basic idea of memory read/write and file IO.  It has a 
potential to change traditional programming models and 
application programs drastically. Of various NVMs, flash 
memory is already widely available to end-users. Its access 
time is not as short as that of DRAM, but it provides a much 
greater capacity at a lower cost and with less power 
consumption. With regard to these points, flash memory is one 
of the candidates as a DRAM extension to the main memory[2]. 

 Recent PCIe bus-connected flash SSDs [3][4] achieve 
several hundred times faster latency than HDDs, but it is about 
one thousand time slower than DRAM, as shown in Fig. 1.  
The gap between DRAM and flash SSD is much bigger than 
the gap between L3 cache and memory, which is only 3 to 10 
times difference in latency. Thus, the large latency gap 
between DRAM and flash SSD makes it difficult to use the 
latter as a main memory extension for applications. 

 

 
Fig. 1 Access latency in various memory devices 

This paper investigates the potential of PCIe flash as large 
and slow memory behind DRAM for a stencil computation, 
which is one of the most typical and important computation 
kernels in various scientific and engineering simulations. A 
locality-aware, hierarchical out-of-core computation algorithm 

using data structure blocking techniques is newly applied to 
the stencil computation to bridge the DRAM-Flash latency 
divide. Our novel application of hierarchical temporal 
blocking optimization on stencil computation with a flash 
SSD performs satisfactorily for practical use. We find that 7-
point stencil computations for a 512GiB problem (16 times 
bigger size than that of the DRAM) using only a 32 GiB of 
DRAM and a flash SSD, in Mflops attain 87% of the 
performance achieved in execution using only DRAM.   

  

II. THE LOCALITY-AWARE ALGORITHM FOR USING FLASH SSD 
AS MAIN MEMORY EXTENSION  

 Stencil computation is one of the most popular and important 
types of processing in various scientific and engineering 
simulations. It performs iterative calculations on a limited data 
set, typically the nearest neighbor data. It sweeps the entire 
data – e.g., three-dimensional (3D) physical data space – and 
updates them at each time step. Fig. 2 shows a typical stencil 
computation for a 3D data grid – a 7-point stencil computation 
using the six nearest neighbor points and a 19-point stencil 
computation using the 18 nearest neighbor points. 

 

FIG.2  7-POINT AND 19-POINT STENCIL COMPUTATIONS ON 3D DATA  

Temporal blocking algorithm, which extracts not only spatial 
locality but also temporal locality for iterative applications, is 
newly applied to flash and DRAM memory layers for stencil 
computations [6]. Typical temporal blocking algorithm for 3-
dimensional data domain is shown in Fig. 6. We introduce 
three-layered data structures corresponding to Flash, DRAM, 
L3-cache memory hierarchy in the algorithm to extract 
memory access locality for each layer in memory hierarchy, as 
shown in Fig.3.  

There are several options in the use of flash SSD as memory 
extension from applications [5]. Three methods are evaluated 
in this experiment,  (1) swap method, (2) mmap method and 
(3) aio method, shown in Fig. 3. In the swap method, memory 
allocation, malloc() function is used in applications and a flash 
SSD is used as a swap device under the virtual memory system 
of the OS. In the mmap method, a file memory map mmap() 
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function is used in applications and a flash SSD is used as a 
file system. In the aio method, Linux kernel asynchronous 
Input/Output library functions are used in applications and a 
flash SSD is used as a block device.  

Fig. 4 shows relative execution times of a 7-point stencil 
64GiB-problem for each method using limited DRAM, 32GiB, 
and sufficient DRAM, 128GiB. aio method with temporal 
blocking is most effective for the execution under limited 
DRAM. With aio method, computation time for 64GiB 
problem using only 32GiB of DRAM and Flash takes only 1.5 
time larger than that of normal execution using sufficient 
DRAM, 128GiB. Without temporal blocking algorithm, its 
computation time using 32GiB DRAM takes 65.2 time larger 
than the normal execution as shown in Fig. 4. Fig. 5 shows 
relative effective Mflops of various-size problems using 32GiB. 
In the 1TiB problem execution using only 32GiB DRAM 
achieves 87% performance of normal execution using 
sufficient DRAM.  

 We also optimized the algorithm for NUMA systems and 
found that it achieves sufficient performance in stencil 
computations for using flash SSD as a main memory extension. 

  
Fig.3 Three-layered data structure for locality extraction 

 

 
 Fig.4 Relative times for various methods 
 

 
 Fig. 5 Performance in various-size of problems  
 

 
Fig.6 1-level temporal blocking algorithm: pseudo codes for a 3D domain. 
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