
Minimizing Flash I/O Traffic with Explicit I/Os   
for Efficient Out-of-Core Algorithms  

Hiroko Midorikawa   

   midori@st.seikei.ac.jp,      
 Seikei University, JST-CREST, Tokyo, Japan       

 
I. INTRODUCTION 

  Today, flash memory has established its position in deep 
memory hierarchy as a cost-effective, power-efficient, and 
large-capacity type of memory behind the DRAM layer. 
Moreover, it is becoming popular as an extension of main 
memory for out-of-core algorithms. There are several ways in 
which a flash device can be used for memory extension, e.g., as 
a swap device, with file-mmap, and with explicit I/O operations 
[2][3]. The most popular among these methods is the mmap 
method, where a flash SSD is used as a file system, and a file on 
the flash drive is mapped to the memory. Thus, mmap enables 
us to access a flash drive in the same manner as DRAM memory, 
in byte granularity, without any I/O maintenance between the 
main memory and flash device. The most important advantage 
of using mmap is that it requires little or no modification during 
application programming. The performance of applications 
using mmap depends on the degree of matching between the 
operating system (OS) kernel page replacement policy in the 
page cache and memory access patterns of the application. 
Unfortunately, an OS page replacement designed for general-
purpose usage cannot be easily adapted for each application, 
even if the memory advice call, madvise(), is used. Hence, 
performance improvement is limited for applications because of 
such implicit and general methods of page cache control in 
mmap. As a result, application-aware tuning is gaining 
importance in performance–oriented fields. 

  On the other hand, the most explicit method of carrying out 
I/O operations to a flash device, namely asynchronous I/O (aio), 
requires application programs to be drastically restructured. 
That is memory-semantic accesses to the flash drive in mmap 
are replaced with explicit I/O operations. However, once the 
program is rewritten with an aio explicitly, its performance 
enhances. The amount of data transferred between the flash 
device and memory is reduced, unlike the redundant data 
transfer observed in OS-controlled page cache replacement in 
mmap. The aio method allows applications to maximally utilize 
the space on DRAM, because there is no need to reserve a page 
cache area as required by the mmap method. Moreover, users 
can design efficient I/O scheduling to suit their applications. The 
use of aio with appropriate I/O parameters allows I/O data traffic 
to be minimized, in turn maximizing the application 
performance. A major problem with this approach is that 
explicit I/O parameter tuning procedures are required when 
different system hardware settings and/or different application 
parameters are used. These hardware settings include capacity 
of each memory layer and number of cores and sockets, and 
different application parameters like the domain data size and 
number of time steps.  

 First, this presentation summarizes the performance of the 
aio and mmap methods and optimization techniques. Next, the 
newly developed algorithms, which eliminate the redundant 
computations of existing algorithms [1], are introduced. Finally, 
an automatic method is proposed that enables parameter tuning 
during runtime. The method minimizes the amount of data 
transferred between the flash device and DRAM, which is the 
most dominant factor affecting the performance of the out-of-
core algorithms using flash. The use of explicit I/O operations 
to a flash device together with auto-tuning allows users to easily 
minimize the amount of I/O traffic for achieving maximum 
performance of different hardware and application settings. 

II. MMAP VS. AIO:   IMPLICIT AND EXPLICIT METHODS TO 

USE FLASH SSDS FOR OUT-OF-CORE ALGORITHMS 

  We have developed out-of-core stencil algorithms for flash 
SSDs using aio and mmap [1-3], by increasing data access 
locality using blocking techniques in spatial and temporal 
spaces as shown in Fig. 1.  

 
Fig. 1. Three data arrays in memory layers, buffer arrays in Flash SSD, 

block arrays in DRAM, and i-block arrays in the cache for locality extraction 

Several optimization techniques for the algorithms were 
investigated, in terms of data memory layout and thread work-
share scheme, as shown in Fig. 2. These optimizations reduced 
the execution times of the aio and mmap methods by 55% and 
59%, respectively [3]. As a result, despite the large difference in 
access latency between DRAM and flash of about one thousand 
times, our algorithm was found capable of supporting the flash 
device as an extension of the main memory. For the aio method 
running on the 2-socket system equipped with a 64 GiB of 
DRAM and 1.2 TiB flash SSD, 7-point stencil computations of 
a 1 TiB problem (16 times larger than the DRAM amount) 
exhibited 80% of the performance for the 64 GiB problem 
(equal to the amount of DRAM) [3].  



 Fig. 3 shows the execution times of the aio and mmap 
methods for various size problems, i.e., ranging in 64 GiB-1 TiB. 
The execution time of the aio method is 50–60% of that of the 
mmap method. Moreover, during execution using the mmap 
method, the 19-point 1 TiB problem is terminated by an out-of-
memory killer in the OS, because of the lack of memory 
availability in the large-size file mmap. In contrast, execution of 
the aio method exhibits a stable behavior. Fig. 4 compares the 
aio and mmap methods in terms of Mflops for various problem 
sizes on a system having a fixed DRAM size. The figure shows 
the problem size in terms of the buffer array size for the flash 
device and block array size for the DRAM. As the problem size 
increases, the DRAM capacity available for the page cache area 
decreases, thereby causing a larger performance difference 
between aio and mmap. 

III. TEMPORAL BLOCKING STENCIL ALGORITHM WITHOUT 

REDUNDANT COMPUTATIONS FOR FLASH MEMORIES 

  A detailed description of the new algorithm is omitted here 
because of space limitations. The algorithm is based on locally 
sliding a spatial-block calculation window in block arrays on 
DRAM in temporal block time steps. Fig. 5 shows the relative 
execution times of several versions of the algorithm. The 
mmap1, i.e., the standard method designed for memory and 
cache systems without a flash device, does not have the block 
arrays shown in Fig. 1, where cache-DRAM maintenance is 
implicitly performed by hardware. When using mmap1 as an 
out-of-core algorithm, its DRAM-Flash maintenance is 
implicitly carried out as page cache maintenance by the OS 
kernel for mmap. Fig. 5 compares  (1) mmap1+opt, which is  
mmap1 with our optimization technique shown in Fig. 2;  (2) 
our new algorithms mmap2, which introduces block arrays on 
DRAM; and two versions of advanced algorithms (3)mmap3y 
(or aio3y) and (4) mmap5y (or aio5y), which minimize the total 
amount of data transferred to the flash device. The original 
algorithms, mmap1 and mmap1+opt, are fast when a sufficient 
amount of memory (128 GiB) is available for use. However, 
their performance deteriorates when using 32-GiB DRAM, 
which is half the size of the problem (64 GiB). This situation is 
attributed to implicit page caching in mmap as a result of the flat 
data structure that only uses buffer arrays with mmap, thereby 
causing inefficient data transfer to the flash device. In 
comparison, the use of 2-layer algorithms to introduce 
intermediate block arrays in DRAM improves performance 
considerably when 32 GiB DRAM is used. 

IV. RUNTIME AUTO-TUNING TO FIT UNDERLYING HARDWARE  

 The retrieval of information regarding the underlying 
hardware during runtime and the use of this information to 
calculate the total amount of I/O data for a flash device, enables 
the selection of an optimal combination of spatial and temporal 
blocking sizes to suit the capacity of each memory layer (flash, 
DRAM, L3-cache, and L2-cache). This auto-tuning mechanism 
allows users to easily minimize the amount of I/O traffic and 
gain maximum performance for particular hardware and 
application settings. 
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Fig. 2. Block array memory layout for block-aligned access of the aio 
method (left), and work-share among threads in an i-block array (right) 

 
Fig. 3. Execution times required by the aio and mmap methods for 

problems of various sizes 

Fig. 4. Effective MFlops on fixed-size memory (64 GiB) in a 2-socket 
system for aio and mmap methods

 

Fig. 5. Relative execution times of various algorithms with the aio and 
mmap methods 


