
Minimizing Flash I/O Traffic with Explicit I/Os
for Efficient Out-of-Core Algorithms

Hiroko Midorikawa

 midori@st.seikei.ac.jp,
 Seikei University, JST-CREST, Tokyo, Japan

I. INTRODUCTION

 Today, flash memory has established its position in deep
memory hierarchy as a cost-effective, power-efficient, and
large-capacity type of memory behind the DRAM layer.
Moreover, it is becoming popular as an extension of main
memory for out-of-core algorithms. There are several ways in
which a flash device can be used for memory extension, e.g., as
a swap device, with file-mmap, and with explicit I/O operations
[2][3]. The most popular among these methods is the mmap
method, where a flash SSD is used as a file system, and a file on
the flash drive is mapped to the memory. Thus, mmap enables
us to access a flash drive in the same manner as DRAM memory,
in byte granularity, without any I/O maintenance between the
main memory and flash device. The most important advantage
of using mmap is that it requires little or no modification during
application programming. The performance of applications
using mmap depends on the degree of matching between the
operating system (OS) kernel page replacement policy in the
page cache and memory access patterns of the application.
Unfortunately, an OS page replacement designed for general-
purpose usage cannot be easily adapted for each application,
even if the memory advice call, madvise(), is used. Hence,
performance improvement is limited for applications because of
such implicit and general methods of page cache control in
mmap. As a result, application-aware tuning is gaining
importance in performance–oriented fields.

 On the other hand, the most explicit method of carrying out
I/O operations to a flash device, namely asynchronous I/O (aio),
requires application programs to be drastically restructured.
That is memory-semantic accesses to the flash drive in mmap
are replaced with explicit I/O operations. However, once the
program is rewritten with an aio explicitly, its performance
enhances. The amount of data transferred between the flash
device and memory is reduced, unlike the redundant data
transfer observed in OS-controlled page cache replacement in
mmap. The aio method allows applications to maximally utilize
the space on DRAM, because there is no need to reserve a page
cache area as required by the mmap method. Moreover, users
can design efficient I/O scheduling to suit their applications. The
use of aio with appropriate I/O parameters allows I/O data traffic
to be minimized, in turn maximizing the application
performance. A major problem with this approach is that
explicit I/O parameter tuning procedures are required when
different system hardware settings and/or different application
parameters are used. These hardware settings include capacity
of each memory layer and number of cores and sockets, and
different application parameters like the domain data size and
number of time steps.

 First, this presentation summarizes the performance of the
aio and mmap methods and optimization techniques. Next, the
newly developed algorithms, which eliminate the redundant
computations of existing algorithms [1], are introduced. Finally,
an automatic method is proposed that enables parameter tuning
during runtime. The method minimizes the amount of data
transferred between the flash device and DRAM, which is the
most dominant factor affecting the performance of the out-of-
core algorithms using flash. The use of explicit I/O operations
to a flash device together with auto-tuning allows users to easily
minimize the amount of I/O traffic for achieving maximum
performance of different hardware and application settings.

II. MMAP VS. AIO: IMPLICIT AND EXPLICIT METHODS TO

USE FLASH SSDS FOR OUT-OF-CORE ALGORITHMS

 We have developed out-of-core stencil algorithms for flash
SSDs using aio and mmap [1-3], by increasing data access
locality using blocking techniques in spatial and temporal
spaces as shown in Fig. 1.

Fig. 1. Three data arrays in memory layers, buffer arrays in Flash SSD,

block arrays in DRAM, and i-block arrays in the cache for locality extraction

Several optimization techniques for the algorithms were
investigated, in terms of data memory layout and thread work-
share scheme, as shown in Fig. 2. These optimizations reduced
the execution times of the aio and mmap methods by 55% and
59%, respectively [3]. As a result, despite the large difference in
access latency between DRAM and flash of about one thousand
times, our algorithm was found capable of supporting the flash
device as an extension of the main memory. For the aio method
running on the 2-socket system equipped with a 64 GiB of
DRAM and 1.2 TiB flash SSD, 7-point stencil computations of
a 1 TiB problem (16 times larger than the DRAM amount)
exhibited 80% of the performance for the 64 GiB problem
(equal to the amount of DRAM) [3].

 Fig. 3 shows the execution times of the aio and mmap
methods for various size problems, i.e., ranging in 64 GiB-1 TiB.
The execution time of the aio method is 50–60% of that of the
mmap method. Moreover, during execution using the mmap
method, the 19-point 1 TiB problem is terminated by an out-of-
memory killer in the OS, because of the lack of memory
availability in the large-size file mmap. In contrast, execution of
the aio method exhibits a stable behavior. Fig. 4 compares the
aio and mmap methods in terms of Mflops for various problem
sizes on a system having a fixed DRAM size. The figure shows
the problem size in terms of the buffer array size for the flash
device and block array size for the DRAM. As the problem size
increases, the DRAM capacity available for the page cache area
decreases, thereby causing a larger performance difference
between aio and mmap.

III. TEMPORAL BLOCKING STENCIL ALGORITHM WITHOUT

REDUNDANT COMPUTATIONS FOR FLASH MEMORIES

 A detailed description of the new algorithm is omitted here
because of space limitations. The algorithm is based on locally
sliding a spatial-block calculation window in block arrays on
DRAM in temporal block time steps. Fig. 5 shows the relative
execution times of several versions of the algorithm. The
mmap1, i.e., the standard method designed for memory and
cache systems without a flash device, does not have the block
arrays shown in Fig. 1, where cache-DRAM maintenance is
implicitly performed by hardware. When using mmap1 as an
out-of-core algorithm, its DRAM-Flash maintenance is
implicitly carried out as page cache maintenance by the OS
kernel for mmap. Fig. 5 compares (1) mmap1+opt, which is
mmap1 with our optimization technique shown in Fig. 2; (2)
our new algorithms mmap2, which introduces block arrays on
DRAM; and two versions of advanced algorithms (3)mmap3y
(or aio3y) and (4) mmap5y (or aio5y), which minimize the total
amount of data transferred to the flash device. The original
algorithms, mmap1 and mmap1+opt, are fast when a sufficient
amount of memory (128 GiB) is available for use. However,
their performance deteriorates when using 32-GiB DRAM,
which is half the size of the problem (64 GiB). This situation is
attributed to implicit page caching in mmap as a result of the flat
data structure that only uses buffer arrays with mmap, thereby
causing inefficient data transfer to the flash device. In
comparison, the use of 2-layer algorithms to introduce
intermediate block arrays in DRAM improves performance
considerably when 32 GiB DRAM is used.

IV. RUNTIME AUTO-TUNING TO FIT UNDERLYING HARDWARE

 The retrieval of information regarding the underlying
hardware during runtime and the use of this information to
calculate the total amount of I/O data for a flash device, enables
the selection of an optimal combination of spatial and temporal
blocking sizes to suit the capacity of each memory layer (flash,
DRAM, L3-cache, and L2-cache). This auto-tuning mechanism
allows users to easily minimize the amount of I/O traffic and
gain maximum performance for particular hardware and
application settings.

REFERENCES
[1] H. Midorikawa, et al. “An Evaluation of the Potential of Flash SSD as

Large and Slow Memory for Stencil Computations,” Proc. of the 2014

International Conference on High Performance Computing and
Simulation IEEE-HPCS2014, pp. 268-277, (2014.7)

[2] H. Midorikawa, “Using Flash SSDs as Main Memory Extension with a
Locality-aware Algorithm,” Non-Volatile Memories Workshop 2015

[3] H. Midorikawa, H. Tan “Locality-Aware Stencil Computations using
Flash SSDs as Main Memory Extension,” Proc. of IEEE/ACM
International Symp. on Cluster, Cloud and the Grid Computing
CCGrid2015, pp. 1163-1168, (2015.5)

Fig. 2. Block array memory layout for block-aligned access of the aio
method (left), and work-share among threads in an i-block array (right)

Fig. 3. Execution times required by the aio and mmap methods for

problems of various sizes

Fig. 4. Effective MFlops on fixed-size memory (64 GiB) in a 2-socket
system for aio and mmap methods

Fig. 5. Relative execution times of various algorithms with the aio and
mmap methods

