
A Highly Efficient I/O-based Out-of-Core Stencil
Algorithm with Globally Optimized Temporal

Blocking

Hiroko Midorikawa, Hideyuki Tan
Department of Computer and Information Science

Seikei University, JST CREST
Tokyo, Japan

midori@st.seikei.ac.jp

Abstract— This paper proposes the most efficient I/O-based out-
of-core stencil algorithm for large-capacity type of non-volatile
memory (NVM), such as flash. The paper evaluates the
performances of various out-of-core stencil algorithms and
implementations designed for flash. The algorithms for flash are
very different from existing algorithms designed for memory-and-
cache, host-and-GPU, and local-and-remote nodes, in their
schemes, data structures used in stencil computations, and the way
of using blocking technique to increase data access locality for
accelerating performance. The proposed algorithm achieves 80%
of the performance of in-core computing using sufficient capacity
of the main memory, even if available memory capacity is limited
to 6.3% of the data size required in the stencil computation
problem. In other words, the algorithm degrades performance
within 20% for the stencil computation problem that requires
2TiB of data by using only 128GiB of main memory and flash SSDs
whose access latency is much larger than that of DRAM.

Keywords—Non-volatile memory; flash memory; temporal
blocking; stencil; algorithm; out-of-core; asynchronous I/O; access
locality; auto-tuning;

I. INTRODUCTION

Stencil computation is one of the most important
computation kernels in various scientific and engineering
simulations. Stencil computations often require significant
amounts of memory for addressing large-scale problems and/or
for higher resolution data analysis. However, there is a limit to
how much DRAM can be increased in main memory because of
the number of memory slots on server boards, power
consumption constraints, and other resource limitations. One of
the common solutions used to satisfy this requirement is using
cost-effective and large-capacity non-volatile memory (NVM).

Today, various types of new memory devices including non-
volatile memories, such as ReRAM, MRAM, PCM, 3D-Xpoint
and Z-NAND [5], are being actively investigated. Nevertheless,
NAND-flash memory is the most ubiquitous to end users at
present and it is still determined as a cost-effective, power-
efficient, and large-capacity type of memory behind the DRAM
layer in the memory hierarchy. The three-dimensional (3D)-
structured NAND-flash has been improving in performance and
capacity, but its access latency is still much longer, by a factor
of 1000, than DRAM access latency. The latency gap between
DRAM and flash is much larger than that between cache and
DRAM.

We have been investigating out-of-core stencil computation
algorithms designed for large-capacity type of NVMs, such as

NAND flash [1-4]. This paper proposes the most efficient I/O-
based out-of-core stencil algorithm and implementation as well
as the evaluation of its performance. The algorithm is available
for not only one-node server but also SSD-equipped clusters for
local-node calculations [4]. The algorithm for flash is very
different from existing algorithms designed for memory-and-
cache, host-and-GPU, and local-and-remote nodes, in their
implementations, data layout used in stencil computations, and
the way of using blocking technique to increase data access
locality for accelerating performance. The algorithm uses highly
parallel asynchronous I/O (AIO) and a temporal blocking
technique without redundant calculations to overcome the
latency divide between flash and DRAM. It achieves 80% of the
performance of in-core computing using sufficient capacity of
the main memory, even if available memory capacity is limited
to 6.3% of the data size required in the stencil computation
problem. In other words, the algorithm degrades performance
within 20% for a stencil problem that requires 2 TiB of data by
using only 128 GiB of main memory and flash SSDs.

According to our earlier studies [2], I/O-based algorithms
gains not only higher performance but also more stable behavior,
compared to mmap-based and swap-based algorithms with
memory-semantic access. The processes using mmap large
capacity of memory are often killed unexpectedly by the
operating system (OS), i.e. the out of memory (OOM) killer,
when the remaining available memory size becomes lower than
the predefined threshold by the OS kernel parameter. It is
difficult to control and prevent OOM killer for individual
platform and problem. Moreover, the performance of mmap-
based algorithms depends on the amount of available unused
main memory of DRAM at runtime, because the remaining main
memory is used by the OS as page cache area for memory-
mapped file accessing. When the size of the remaining unused
memory is limited at runtime, mmap-based algorithms exhibit
lower performance.

Another advantage of I/O-based algorithms is that using
explicit I/O provides benefits in calculating globally optimal
blocking sizes in the temporal blocking technique. To achieve
the maximum performance, the algorithms use appropriate
spatial and temporal blocking parameters that minimizes the
amount of data transferred between the flash device and the
DRAM, which is a dominant factor affecting the performance of
out-of-core computing. By a just-in-time auto-tuning system,
such as Blk-Tune [3], the I/O-based algorithm allows users to

978-1-5386-0700-8/17/$31.00 ©2017 IEEE

maximize the performance easily for particular platforms and
application settings.

The algorithms proposed here are not limited to flash but are
also available to other I/O-based NVMs and read/write-based
memories. With the use of the algorithm, large-scale stencil
problems can be solved with a limited size of main memory.

II. TEMPORAL BLOCKING STENCIL ALGORITHMS

Stencil computation is considered a memory-bound type of
computation, and it has been studied in numerous works to
accelerate its execution. One typical technique is increasing data
access locality, which typically causes higher cache hit, by
introducing blocking techniques in spatial and temporal spaces
in stencil computations [6–8].

A. Algorithms With/Without Redundant Calculations

Temporal blocking algorithms are categorized into two
types: one with redundant calculations, AL-R in Fig. 1, and the
other without them, AL-NR in Fig. 2(a). Domain data buffer
arrays are divided into sub-blocks, bx × by, and each block is
updated in bt steps locally and written back to the destination
buffer array. In this sutdy, bt is the temporal blocking size and
(bx, by, bz) for a 3D data domain is the spatial blocking size. h
is a size parameter in the stencil computation kernel, e.g., h = 1
for a typical seven-point stencil for a 3D data domain.

 In AL-R, one block is read from a domain source (src) buffer
array and an updated destination (dst) block is written back to a
dst buffer array. The calculation area in the block arrays shrinks
according to the current update step progress, as shown in Fig.
1. The final result area updated bt times is smaller than the area
initially read from the src buffer array. This difference in area
corresponds to the amount of redundant calculations.

In AL-NR, the calculation areas in the block arrays are
shifted according to the current update step progress, as shown
in Fig. 2(a). Unlike AL-R, AL-NR reads two block arrays from
both the src and dst buffer arrays, and updated results in both
the src and dst block arrays are written back to the buffer arrays
after bt-step updates. This is necessary because each block array
still includes an uncompleted calculation area, which is used and

completed in the next neighbor block update procedures. This is
an essential mechanism to eliminate the redundant calculations
in AL-NR. Thus, AL-NR decreases the amount of calculations
compared to AL-R, but it increases the amount of read/write data
from/to buffer arrays. This becomes an important factor in the
performance of out-of-core algorithms using flash for storing
buffer arrays. Read/write of buffer arrays corresponds to flash
I/O. The performance impact is very different from that in
existing memory-based algorithms. The most of the existing
theoretical studies of stencil computations focus on memory
systems, whose access latency is much smaller than that of the
flash SSD.

B. Data Structures : Flat Model and Layered Model

AL-R is required to use two block arrays in addition to the
two domain data buffer arrays, because it updates a larger
calculation area than the final result-block area. Thus AL-R uses
a layered data model shown in Fig. 1. On the other hand, AL-
NR can use a flat-model using only buffer arrays in Fig 2(b), as
well as the layered model in Fig. 2 (a). The selection of these
models are more important in the flash-based out-of-core
algorithms than the algorithms designed for memory systems.

III. THE FLASH-BASED OUT-OF-CORE ALGORITHMS

The out-of-core algorithms evaluated here employ a
hierarchical blocking scheme corresponding to a memory
hierarchy as shown in Fig. 3(a). Flash in the bottom stores

Fig. 1 Calculation of bt steps in block arrays and read/write from/to
domain arrays in the AL-R algorithm.

Fig. 2 (a) Calculation of bt steps in block arrays and read/write from/to
domain buffer arrays in the AL-NR algorithm.

Fig. 2 (b) Flat-model available to the AL-NR algorithm. The bt-step
update calculations are performed directly on buffer arrays.

problem domain data as buffer arrays. Main memory in the
middle contains block arrays for temporal blocking. Cache in the
top includes iblock arrays for spatial blocking for multi-thread
computations in the z-dimension as shown in Fig. 3(b).

A. Three Methods to Use Flash SSDs

Temporal blocking was first applied to a flash and main
memory tier for an out-of-core algorithm in our earlier work [1],
where flash was used as a swap device under the revised swap
kernel fast-swap (OpenNVM) [9] in Linux. Moreover, we
evaluated three methods, namely, 1) swap device, 2) file mmap,
and 3) asynchronous I/O (AIO), that use a flash device for out-
of-core stencil computations [2].

In the swap method (1), buffer and block arrays are allocated
by the malloc() in applications. The block arrays are locked onto
main memory by the mlock() to prevent them being swapped
out. This method is transparent to application programs.
However, the swap daemon was originally designed to rescue a
process in the emergent situation with lack of memory. Thus, the
performance of program execution is very low and unstable. It
is not an adequate method for ordinary out-of-core computations.

In the mmap method (2), the block arrays are allocated by
malloc() and the buffer arrays are represented as files that are
memory mapped by the mmap(). In this method, normal in-core
programs are available to out-of-core computing with a little
modification. The performance is better than that in the swap
method, but it depends on available unused memory capacity for
page cache. It is also difficult to prevent the OOM killer, as
mentioned in Section I.

In the aio method, Linux kernel asynchronous input/output
(AIO) library functions, such as io_submit() and io_getevents(),
are used. The block arrays are allocated by malloc() and the
buffer arrays are represented as consecutive blocks on a flash
block device. A flash SSD is opened with O_DIRECT, which
eliminates file-system-layer overhead and kernel-managed page
cache. The recent improvement of block storage stacks in Linux
[10], specifically, multiple I/O request queues for multi-core,
provides higher performance to AIO. It makes it possible to
issue 64K or more I/O operations simultaneously by multiple
threads in an asynchronous fashion. The aio method gains higher
and more stable performance compared to other two methods.

B. Block Array Memory Layout for the AIO method

When using the aio method, AIO requires block-size-aligned
data access for block devices. Thus, block arrays in Fig. 3a are
implemented with a one-dimensional pointer array for the z-
dimension and multiple xy-planes pointed to by the pointers in
the array for the z-dimension, as shown in Fig. 3(c). The start
address and the size of each xy-plane are aligned on the device
block size boundary of the flash SSD, which was 4KB in our
case. Each xy-plane is a single I/O unit of AIOs by multiple
threads in parallel. Highly-parallel, large-size, and block-aligned
I/O is a key to boost the performance of flash-based algorithms.

IV. THE EVALUATION OF FLASH-BASED STENCIL ALGORITHMS

Fig. 4 shows the comparison of eleven algorithms with
different methods, swap, mmap, and aio, and different data
models, flat (1-layer) and layered (2-layer) models, in relative
execution times of 3D-stencil computations (seven-point stencil,
problem size: 64GiB). It also shows the difference in times
between the case using sufficient 128GiB-memory (in-core

computing) and the case using insufficient 32GiB-memory (out-
of-core computing). The baseline is the fastest in-core
computing case, mmap1 (1-layer model with optimal layout)
with AL-NR in column (col.) 6b.

The leftmost case, noTB with the swap method in col. 1,
shows the time when using only spatial blocking. Without
temporal blocking, out-of-core computing time grows 66.29 in
contrast to the in-core time that grows only 1.02 in col. 1b. In
cols. 2 to 4, times using temporal blocking with redundant
calculations, AL-R, are shown for three methods. In AL-R, aio
in col. 4 is the fastest for out-of-core computing. For in-core
computing, AL-R in col. 2b is not efficient compared to the one
without temporal blocking in col. 1b. The temporal blocking size
used here, bt (=128), is inadequate to the DRAM-cache tier for
in-core computing, but adequate to the DRAM-flash tier for out-

Fig. 3 (a) Three data arrays in memory layers: buffer arrays in flash SSD,
block arrays in DRAM, and iblock arrays in cache for locality
extraction.

Fig. 3 (b) A block array is divided into iblock arrays. The iblock arrays
in cache are updated by multiple threads in parallel for the z-dimension.

Fig. 3 (c) A block array memory layout for AIO.

of-core computing. In AL-R, larger bt
size accelerates performance by
increasing temporal access locality and
degrades performance by increasing
redundant calculations. Appropriate bt
size depends on this tradeoff. Generally,
optimal bt size for a DRAM-cache tier
is smaller than that for a DRAM-Flash
tier.

In cols. 5 to 11, AL-NR, temporal
blocking with no redundant
calculations, is used with the mmap and
aio methods. The mmap1 algorithm in
cols. 5 and 5b corresponds to the
original version AL-NR designed only
for main memory and cache without
flash devices. The mmap1+opt in col. 6
is an optimized version of mmap1 by introducing element
padding to block arrays, a typical technique to reduce cache
line and TLB entry conflicts by multiple threads. Both
algorithms employ a flat model (1-layer) in Fig. 2 (b) because
their original design is based on cache-DRAM maintenance
being implicitly performed by hardware. When employing
the mmap1 algorithm for a flash-based out-of-core
computation with the mmap method, its DRAM-flash
maintenance is implicitly carried out as page cache
maintenance by the OS. For in-core computing, the 1-layer-
opt model with AL-NR in cols. 6b gains the highest
performance. In contrast, for out-of-core computing using
flash, the 1-layer AL-NR in cols. 5 and 6 exhibit worse
performance compared to that of the 2-layer AL-R in col. 3.
The mmap2 in col. 7, a modified version of mmap1-opt that
introduces an intermediate layer, improves its performance
considerably. Thus, the 2-layer model is more effective for
out-of-core computing using flash, and the 1-layer model is
only effective for in-core computing. This is attributed to the
implicit page caching in mmap that causes inefficient data
transfer to the flash device, as a result of using only buffer
arrays, without an intermediate block array layer.

Algorithms in cols. 8 to 11 are advanced versions of AL-
NR with the 2-layer model, which are optimized to reduce the
amount of read/write traffic between buffer arrays and block
arrays as shown in Fig. 2(a). The first group are mmap3y and
aio3y in cols. 8 and 10, and the second group are mmap5y and
aio5y in cols. 9 and 11. Details of these algorithms are
described in the next section. According to the evaluation of
11 algorithms in Fig. 5, the most efficient out-of-core
algorithm is aio5y in col. 11. Its performance degradation
compared to the best of in-core algorithm, mmap1-opt, is only
24%, when computing the 64GiB-size problem by using only
a half-size of 32GiB-DRAM.

In contrast to AL-R, AL-NR is free from the redundant
calculation overhead, and there is only the tradeoff in how the
spatial and temporal blocking sizes share the fixed DRAM
capacity. The globally optimal blocking size combination of
spatial and temporal sizes can be determined by the search
technique used in Blk-Tune. It is designed for reducing the the
amount of read/write traffic between buffer arrays and block
arrays, or in this case, the amount of I/O traffic between
DRAM and flash.

Fig. 6 Examples of read/write patterns aio5y for 3D block arrays

Fig. 4 Comparison of out-of-core algorithms. Relative execution times of seven-point stencil computation

Fig. 5 AL-NR: read/write patterns read/write between buffer arrays and block
arrays in three algorithms, aio, aio3y, aio5y

V. I/O-BASED OPTIMIZED ALGORITHMS

In this section, the most efficient I/O-based AL-NR
algorithms, aio3y and aio5y, are described in detail. Fig. 6
shows how one block calculations proceed from block n to
block n+1 in the next position in the y-dimension in this case. It
also shows read/write areas in block arrays in one-block updates
for three algorithms, (1) aio in col. 4, (2) aio3y in col. 10, and
(3) aio5y in col. 11 in Fig. 5. They have different read/write
patterns.

In aio and aio3y, the top and the second row of Fig. 6, both
src and dst block arrays have the same manner of read/write
from/to the buffer arrays, src and dst. In the basic algorithm, aio,
Step1: each block array reads data from each buffer array,
Step2: update block n in bt steps using the src and dst blocks ,
Step3: each block writes its data back to each buffer array. To
reduce the amount of read/write traffic, aio3y introduces an
additional step, Step4: the rightmost part of a block array is
copied in the leftmost part in the same block, for reuse by the
next block update in block n+1 in the right hand part of Fig. 6.
Typically, the amount of reduced read/write is double that of of
the copied area, (bt + h) × (bt + bz + 2h) .

In aio5y, the src block array has the same manner as aio3y,
but the dst block array has a different read/write pattern as
shown in the bottom of Fig. 6. In the first update step using
block arrays, the most part of the dst block array is updated
before read. Thus, it is possible to reduce the read areas from
the dst buffer array to the dst block array. For the same reason,
the write area in the dst block array to the buffer array can be
reduced, because only a small area as shown in the bottom part
of the dst array is used by the neighboring block in the z-
dimension. Fig. 7 shows the read/write patterns of the dst block
array in aio5y for 3D stencil computations. The read/write
patterns are different for the position in the buffer array and
block division scheme employed. The boundary conditions in
the buffer arrays also cause different patterns. The central block
in Fig. 6 is the typical case in 3D computation that corresponds
to the 2D case in the bottom of Fig. 5.

VI. PERFORMANCE EVALUATION

In this section, the most effective I/O-based out-of-core
stencil algorithm, aio5y and aio3y are evaluated for 3D-stencil
problems ranging from 128 GiB to 2 TiB in data size by using
128GiB main memory in the platforms, crest6 and crest10 in
Table I. Flash devices used here are the latest cost-effective M.2
NVMe flash, Samsung 950Pro (512GB) and 960Pro (2TB).
They are configured as 1TB and 4TB devices for crest6 and
crest10 individually by using software RAID0 to double their
performance. Read/write bandwidths of various flash devices

are shown in Fig. 7. They are measured by parallel AIO of actual
sizes used in the 64GiB-stencil-problem in our algorithms.

In this experiment, the best combinations of spatial and
temporal blocking sizes for each stencil problem and platform
are determined by Blk-Tune [3], as shown in Table II for crest10.

Fig. 7 Read/write performance of the data sizes used in the 64GiB-stencil-
problem for various flash devices, (AIO, measured in crest4)

TABLE I PLATFORMS

server
L1

cache
(KiB)

L2
cache
(KiB)

L3
cache
(MiB)

Phys
Mem
(GiB)

Flash
Mem
(TiB)

CPU
Xeon

E5, (GiHz)

Total
cores

socket
cores/
socket

crest0 32 256 20 32 1.2 2650, (2) 8 1 8

crest4 32 256 20 64 0.785 2687W, (3.1) 16 2 8

crest6 32 256 25 128 1 2687W v3,(3.1) 20 2 10

cres10 32 256 30 128 4 2687W v4,(3.0) 24 2 12

Fig. 8 Execution times and performances in aio3y and aio5y

Fig. 9 Time components in aio3y and aio5y

TABLE II TEMPORAL & SPATIAL BLOCK SIZES FOR CREST10 BY BLK-TUNE

problem size 512 GiB 1 TiB 2 TiB

nx, ny, nz 2048 x 4096 x 4096 4096 x 4096 x 4096 4096 x 4096 x 8192
nt 1000 1000 1000

bx, by, bz 2048 x 1025 x 2304 4096 x 683 x 1536 4096 x 683 x 1440
bt 500 334 334

ix, iy, iz 2048 x 1 x 192 4096 x 1 x 192 4096 x 1 x 192

block-division 1 x 4 x 2 1 x 6 x 3 1 x 6 x 6
Iteration 2 3 3

total num of blocks processed 16 54 108

max size of blocks 107.3 GiB 116.2 GiB 110.3 GiB

Blk-Tune retrieves platform hardware information and selects
the best blocking parameters for a given problem and platform
at runtime. It minimizes the amount of data transferred between
buffer arrays (typically in the flash device) and block arrays (in
the DRAM), which is a dominant factor affecting the
performance of out-of-core algorithms using flash.

A. Comparison of aio3y and aio5y

The Fig. 8 shows the execution times and performance
(Mflops) on crest6 for four problems (128 GiB, 500-step), (256
GiB ,500-step), (256 GiB, 1000-step) , and (512 GiB, 1000-step)
using aio3y and aio5y. The aio5y algorithm gains better
performance than aio3y, except in the case of the 128 GiB
problem that exists on the border between in-core and is out-of-
core computing. The overhead come from the algorithm
complexity in aio5y becomes larger than that in aio3y for in-core
computing. For the 512 GiB-problem, performance
degradations in both algorithms are small. Fig.9 shows the time
components of aio3y and aio5y for the same problems. The read
(buf2blk) and write (blk2buf & blk2blk) time components are
small in aio5y in compared to those in aio3y.

B. The Performance of aio5y for Large-Size Problems

By using 4-TiB flash, large-size stencil problems are
evaluated by aio5y. Fig. 10 shows execution times,
performances (Mflops), and relative performances for seven
problems of 64 GiB – 2 TiB sizes by aio5y using 128-GiB main
memory in crest10. All aio5y executions including the 2-TiB
problem using 128-GiB memory are stable, unlike mmap5y,
which is difficult to use for the execution of large size problems.

 According to the relative performance in Fig. 11, the
performance in the 512-GiB problem, where the DRAM ratio
(the main memory size divided by the problem size) is 25%,
achives 97% of the performance gained by the in-core
computing in 64GiB-problem. Even in the 2-TiB problem case,
where the DRAM ratio is only 6.25%, the performance
maintains 80% of that in-core computing. The aio5y realizes
sufficiently high performances.

VII. CONCLUSIONS

This paper proposes the most efficient I/O-based out-of-core
stencil algorithm for large-capacity type of NVM, such as flash.
The paper also evaluates the advantages and disadvantages of
various out-of-core stencil algorithms and implementations
designed for flash, by using state-of-the-art flash devices. We
believe it is the first review of flash-based out-of-core stencil

computations. Among these, the most efficient I/O-based out-
of-core stencil algorithms, aio3y and aio5y, are described in
detail and their performance is evaluated. They achieve 97% and
80% of in-core computing performance with sufficient memory,
for out-of-core computing of 512-GiB and 2-TiB problems with
only 128 GiB-DRAM and a cost-effective flash NVM. The I/O-
based algorithms show not only high performance but also
highly stable behavior. Moreover, they can use globally optimal
blocking sizes which can be calculated precisely and achieve the
best performance for a given platform and problem. With the use
of the algorithms, large-scale stencil problems can be solved
with limited main memory size, such as that in a personal work-
station.

REFERENCES
[1] H. Midorikawa, H. Tan, and T. Endo, “An Evaluation of the Potential of

Flash SSD as Large and Slow Memory for Stencil Computations,” Proc.
2014 Int. Conf. on High Performance Computing and Simulation IEEE-
HPCS2014, Jul. 2014, pp. 268-277.

[2] H. Midorikawa and H. Tan, “Locality-Aware Stencil Computations
Using Flash SSDs as Main Memory Extension,” Proc. IEEE/ACM Int.
Symp. on Cluster, Cloud and Grid Computing CCGrid2015, May 2015,
pp. 1163-1168.

[3] H. Midorikawa: “Blk-Tune: Blocking Parameter Auto-Tuning to
Minimize Input-Output Traffic for Flash-Based Out-of-Core Stencil
Computations”, The 11th Int. workshop on Automatic Performance
Tuning, iWAPT2016, IEEE Int. Parallel and Distributed Process. Symp.
Workshops (DOI 10.1109/IPDPSW.2016.48), pp.1516-1526, May 2016

[4] H.Midorikawa, H.Tan: "Evaluation of Flash-based Out-of-core Stencil
Computation Algorithms for SSD-Equipped Clusters", The 22nd IEEE
International Conference on Parallel and Distributed Systems
ICPADS2016 , pp.1031-1040, DOI: 10.1109/ICPADS.2016.0137

[5] Proc. of Flash Memory Summit 2016, Aug. 9-11, 2016, Santa Clara.

http://www.flashmemorysummit.com/English/Collaterals/Documents/Fl
ashMemorySummit_Preview_Program.pdf

[6] F. Bassetti, et.al., “Optimizing Transformations of Stencil Operations for
Parallel Object-Oriented Scientific Frameworks on Cache-Based
Architectures”, ISCOPE’98, LNCS 1505, pp107-118, 1998.

[7] L. Renganaranaya, et al., “Toward Optimal Multi-level Tiling for
Stencil Computations”, IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2007).

[8] D. Wonnacott, “Using Time Skewing to Eliminate Idle Time Due to
Memory Bandwidth and Network Limitations”, International Parallel
and Distributed Processing Symposium (IPDPS 2000).

[9] OpenNVM, FusionIO, http://opennvm.github.io.

[10] M Bjørling, J Axboe, D Nellans, P Bonnet, “Linux Block IO:
Introducing Multi-Queue SSD Access on Multi-Core Systems”, Proc. of
the 6th International Systems and Storage Conference (SYSTOR '13)

Fig. 10 Execution times, performances (Mflops) and relative performances of aio5y for large-size stencil problems

