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Abstract— This paper proposes the most efficient I/O-based out-
of-core stencil algorithm for large-capacity type of non-volatile 
memory (NVM), such as flash. The paper evaluates the 
performances of various out-of-core stencil algorithms and 
implementations designed for flash. The algorithms for flash are 
very different from existing algorithms designed for memory-and-
cache, host-and-GPU, and local-and-remote nodes, in their 
schemes, data structures used in stencil computations, and the way 
of using blocking technique to increase data access locality for 
accelerating performance. The proposed algorithm achieves 80% 
of the performance of in-core computing using sufficient capacity 
of the main memory, even if available memory capacity is limited 
to 6.3% of the data size required in the stencil computation 
problem. In other words, the algorithm degrades performance 
within 20% for the stencil computation problem that requires 
2TiB of data by using only 128GiB of main memory and flash SSDs 
whose access latency is much larger than that of DRAM. 

Keywords—Non-volatile memory; flash memory; temporal 
blocking; stencil; algorithm; out-of-core; asynchronous I/O; access 
locality; auto-tuning;  

I. INTRODUCTION  

Stencil computation is one of the most important 
computation kernels in various scientific and engineering 
simulations. Stencil computations often require significant 
amounts of memory for addressing large-scale problems and/or 
for higher resolution data analysis. However, there is a limit to 
how much DRAM can be increased in main memory because of 
the number of memory slots on server boards, power 
consumption constraints, and other resource limitations. One of 
the common solutions used to satisfy this requirement is using 
cost-effective and large-capacity non-volatile memory (NVM).  

Today, various types of new memory devices including non-
volatile memories, such as ReRAM, MRAM, PCM, 3D-Xpoint 
and Z-NAND [5], are being actively investigated. Nevertheless, 
NAND-flash memory is the most ubiquitous to end users at 
present and it is still determined as a cost-effective, power-
efficient, and large-capacity type of memory behind the DRAM 
layer in the memory hierarchy. The three-dimensional (3D)-
structured NAND-flash has been improving in performance and 
capacity, but its access latency is still much longer, by a factor 
of 1000, than DRAM access latency. The latency gap between 
DRAM and flash is much larger than that between cache and 
DRAM. 

We have been investigating out-of-core stencil computation 
algorithms designed for large-capacity type of NVMs, such as 

NAND flash [1-4]. This paper proposes the most efficient I/O-
based out-of-core stencil algorithm and implementation as well 
as the evaluation of its performance. The algorithm is available 
for not only one-node server but also SSD-equipped clusters for 
local-node calculations [4]. The algorithm for flash is very 
different from existing algorithms designed for memory-and-
cache, host-and-GPU, and local-and-remote nodes, in their 
implementations, data layout used in stencil computations, and 
the way of using blocking technique to increase data access 
locality for accelerating performance. The algorithm uses highly 
parallel asynchronous I/O (AIO) and a temporal blocking 
technique without redundant calculations to overcome the 
latency divide between flash and DRAM. It achieves 80% of the 
performance of in-core computing using sufficient capacity of 
the main memory, even if available memory capacity is limited 
to 6.3% of the data size required in the stencil computation 
problem. In other words, the algorithm degrades performance 
within 20% for  a stencil problem that requires 2 TiB of data by 
using only 128 GiB of main memory and flash SSDs.  

According to our earlier studies [2], I/O-based algorithms 
gains not only higher performance but also more stable behavior, 
compared to mmap-based and swap-based algorithms with 
memory-semantic access. The processes using mmap large 
capacity of memory are often killed unexpectedly by the 
operating system (OS), i.e. the out of memory (OOM) killer, 
when the remaining available memory size becomes lower than 
the predefined threshold by the OS kernel parameter. It is 
difficult to control and prevent OOM killer for individual 
platform and problem. Moreover, the performance of mmap-
based algorithms depends on the amount of available unused 
main memory of DRAM at runtime, because the remaining main 
memory is used by the OS as page cache area for memory-
mapped file accessing. When the size of the remaining unused 
memory is limited at runtime, mmap-based algorithms exhibit 
lower performance. 

Another advantage of I/O-based algorithms is that using 
explicit I/O provides benefits in calculating globally optimal 
blocking sizes in the temporal blocking technique. To achieve 
the maximum performance, the algorithms use appropriate 
spatial and temporal blocking parameters that minimizes the 
amount of data transferred between the flash device and the 
DRAM, which is a dominant factor affecting the performance of 
out-of-core computing. By a just-in-time auto-tuning system, 
such as Blk-Tune [3], the I/O-based algorithm allows users to 
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maximize the performance easily for particular platforms and 
application settings.  

The  algorithms proposed here are not limited to flash but are 
also available to other I/O-based NVMs and read/write-based 
memories. With the use of the algorithm, large-scale stencil 
problems can be solved with a limited size of main memory. 

II. TEMPORAL BLOCKING STENCIL ALGORITHMS  

Stencil computation is considered a memory-bound type of 
computation, and it has been studied in numerous works to 
accelerate its execution. One typical technique is increasing data 
access locality, which typically causes higher cache hit, by 
introducing blocking techniques in spatial and temporal spaces 
in stencil computations [6–8].  

A. Algorithms With/Without Redundant Calculations 

Temporal blocking algorithms are categorized into two 
types: one with redundant calculations, AL-R in Fig. 1, and the 
other without them, AL-NR in Fig. 2(a). Domain data buffer 
arrays are divided into sub-blocks, bx × by, and each block is 
updated in bt steps locally and written back to the destination 
buffer array. In this sutdy, bt is the temporal blocking size and 
(bx, by, bz) for a 3D data domain is the spatial blocking size. h 
is a size parameter in the stencil computation kernel, e.g., h = 1 
for a typical seven-point stencil for a 3D data domain. 

 In AL-R, one block is read from a domain source (src) buffer 
array and an updated destination (dst) block is written back to a 
dst buffer array. The calculation area in the block arrays shrinks 
according to the current update step progress, as shown in Fig. 
1. The final result area updated bt times is smaller than the area 
initially read from the src buffer array. This difference in area 
corresponds to the amount of redundant calculations.  

In AL-NR, the calculation areas in the block arrays are 
shifted according to the current update step progress, as shown 
in Fig. 2(a). Unlike AL-R, AL-NR reads two block arrays from 
both the src and dst buffer arrays, and updated results in both 
the src and dst block arrays are written back to the buffer arrays 
after bt-step updates. This is necessary because each block array 
still includes an uncompleted calculation area, which is used and 

completed in the next neighbor block update procedures. This is 
an essential mechanism to eliminate the redundant calculations 
in AL-NR. Thus, AL-NR decreases the amount of calculations 
compared to AL-R, but it increases the amount of read/write data 
from/to buffer arrays. This becomes an important factor in the 
performance of out-of-core algorithms using flash for storing 
buffer arrays. Read/write of buffer arrays corresponds to flash 
I/O. The performance impact is very different from that in 
existing memory-based algorithms. The most of the existing 
theoretical studies of stencil computations focus on memory 
systems, whose access latency is much smaller than that of the 
flash SSD. 

B. Data Structures : Flat Model and Layered Model 

AL-R is required to use two block arrays in addition to the 
two domain data buffer arrays, because it updates a larger 
calculation area than the final result-block area. Thus AL-R uses 
a layered data model shown in Fig. 1. On the other hand, AL-
NR can use a flat-model using only buffer arrays in Fig 2(b), as 
well as the layered model in Fig. 2 (a). The selection of these 
models are more important in the flash-based out-of-core 
algorithms than the algorithms designed for memory systems.  

III. THE FLASH-BASED OUT-OF-CORE ALGORITHMS  

The out-of-core algorithms evaluated here employ a 
hierarchical blocking scheme corresponding to a memory 
hierarchy as shown in Fig. 3(a). Flash in the bottom stores 

 

Fig. 1 Calculation of bt steps in block arrays and read/write from/to 
domain arrays in the AL-R algorithm. 

Fig. 2 (a) Calculation of bt steps in block arrays and read/write from/to 
domain buffer arrays in the AL-NR algorithm. 

 

Fig. 2 (b) Flat-model available to the AL-NR algorithm. The bt-step 
update calculations are performed directly on buffer arrays. 



problem domain data as buffer arrays. Main memory in the 
middle contains block arrays for temporal blocking. Cache in the 
top includes iblock arrays for spatial blocking for multi-thread 
computations in the z-dimension as shown in Fig. 3(b).  

A. Three Methods to Use Flash SSDs 

Temporal blocking was first applied to a flash and main 
memory tier for an out-of-core algorithm in our earlier work [1], 
where flash was used as a swap device under the revised swap 
kernel fast-swap (OpenNVM) [9] in Linux. Moreover, we 
evaluated three methods, namely, 1) swap device, 2) file mmap, 
and 3) asynchronous I/O (AIO), that use a flash device for out-
of-core stencil computations [2].  

In the swap method (1), buffer and block arrays are allocated 
by  the malloc() in applications. The block arrays are locked onto 
main memory by  the mlock() to prevent them being swapped 
out. This method is transparent to application programs. 
However, the swap daemon was originally designed to rescue a 
process in the emergent situation with lack of memory. Thus, the 
performance of program execution is very low and unstable. It 
is not an adequate method for ordinary out-of-core computations. 

In the mmap method (2), the block arrays are allocated by 
malloc() and the buffer arrays are represented as files that are 
memory mapped by the mmap(). In this method, normal in-core 
programs are available to out-of-core computing with a little 
modification. The performance is better than that in the swap 
method, but it depends on available unused memory capacity for 
page cache. It is also difficult to prevent the OOM killer, as 
mentioned in Section I.  

In the aio method, Linux kernel asynchronous input/output 
(AIO) library functions, such as io_submit() and io_getevents(), 
are used. The block arrays are allocated by malloc() and the 
buffer arrays are represented as consecutive blocks on a flash 
block device. A flash SSD is opened with O_DIRECT, which 
eliminates file-system-layer overhead and kernel-managed page 
cache. The recent improvement of block storage stacks in Linux 
[10], specifically, multiple I/O request queues for multi-core, 
provides higher performance to AIO. It makes it possible to 
issue 64K or more I/O operations simultaneously by multiple 
threads in an asynchronous fashion. The aio method gains higher 
and more stable performance compared to other two methods.  

B. Block Array Memory Layout for the AIO method 

When using the aio method, AIO requires block-size-aligned 
data access for block devices. Thus, block arrays in Fig. 3a are 
implemented with a one-dimensional pointer array for the z-
dimension and multiple xy-planes pointed to by the pointers in 
the array for the z-dimension, as shown in Fig. 3(c). The start 
address and the size of each xy-plane are aligned on the device 
block size boundary of the flash SSD, which was 4KB in our 
case. Each xy-plane is a single I/O unit of AIOs by multiple 
threads in parallel. Highly-parallel, large-size, and block-aligned 
I/O is a key to boost the performance of flash-based algorithms. 

IV. THE EVALUATION OF FLASH-BASED  STENCIL ALGORITHMS 

Fig. 4 shows the comparison of eleven algorithms with 
different methods, swap, mmap, and aio, and different data 
models, flat (1-layer) and layered (2-layer) models, in relative 
execution times of 3D-stencil computations (seven-point stencil, 
problem size: 64GiB). It also shows the difference in times 
between the case using sufficient 128GiB-memory (in-core 

computing) and the case using insufficient 32GiB-memory (out-
of-core computing). The baseline is the fastest in-core 
computing case, mmap1 (1-layer model with optimal layout) 
with AL-NR in column (col.) 6b. 

The leftmost case, noTB with the swap method in col. 1, 
shows the time when using only spatial blocking. Without 
temporal blocking, out-of-core computing time grows 66.29 in 
contrast to the in-core time that grows only 1.02 in col. 1b. In 
cols. 2 to 4,  times using temporal blocking with redundant 
calculations, AL-R, are shown for three methods. In AL-R, aio 
in col. 4 is the fastest for out-of-core computing. For in-core 
computing, AL-R in col. 2b is not efficient compared to the one 
without temporal blocking in col. 1b. The temporal blocking size 
used here, bt (=128), is inadequate to the DRAM-cache tier for 
in-core computing, but adequate to the DRAM-flash tier for out-

 

Fig. 3 (a) Three data arrays in memory layers: buffer arrays in flash SSD, 
block arrays in DRAM, and iblock arrays in cache for locality 
extraction. 

 

Fig. 3 (b) A block array is divided into iblock arrays. The iblock arrays 
in cache are updated by multiple threads in parallel for the z-dimension. 

 

Fig. 3 (c) A block array memory layout for AIO. 



of-core computing. In AL-R, larger bt 
size accelerates performance by 
increasing temporal access locality and 
degrades performance by increasing 
redundant calculations. Appropriate bt 
size depends on this tradeoff. Generally, 
optimal bt size for a DRAM-cache tier 
is smaller than that for a DRAM-Flash 
tier.  

In cols. 5 to 11, AL-NR, temporal 
blocking with no redundant 
calculations, is used with the mmap and 
aio methods. The mmap1 algorithm in 
cols. 5 and 5b corresponds to the 
original version AL-NR designed only 
for main memory and cache without 
flash devices. The mmap1+opt in col. 6 
is an optimized version of mmap1 by introducing element 
padding to block arrays, a typical technique to reduce cache 
line and TLB entry conflicts by multiple threads. Both 
algorithms employ a flat model (1-layer) in Fig. 2 (b) because 
their original design is based on cache-DRAM maintenance 
being implicitly performed by hardware. When employing 
the mmap1 algorithm for a flash-based out-of-core 
computation with the mmap method, its DRAM-flash 
maintenance is implicitly carried out as page cache 
maintenance by the OS. For in-core computing, the 1-layer-
opt model with AL-NR in cols. 6b gains the highest 
performance. In contrast, for out-of-core computing using 
flash, the 1-layer AL-NR in cols. 5 and 6 exhibit worse 
performance compared to that  of the 2-layer AL-R in col. 3. 
The mmap2 in col. 7, a modified version of mmap1-opt that 
introduces an intermediate layer,  improves its performance 
considerably. Thus, the 2-layer model is more effective for 
out-of-core computing using flash, and the 1-layer model is 
only effective for in-core computing. This is attributed to the 
implicit page caching in mmap that causes inefficient data 
transfer to the flash device, as a result of using only buffer 
arrays, without an intermediate block array layer.  

Algorithms in cols. 8 to 11 are advanced versions of AL-
NR with the 2-layer model, which are optimized to reduce the 
amount of read/write traffic between buffer arrays and block 
arrays as shown in Fig. 2(a). The first group are mmap3y and 
aio3y in cols. 8 and 10, and the second group are mmap5y and 
aio5y in cols. 9 and 11. Details of these algorithms are 
described in the next section. According to the evaluation of 
11 algorithms in Fig. 5, the most efficient out-of-core 
algorithm is aio5y in col. 11. Its performance degradation 
compared to the best of in-core algorithm, mmap1-opt, is only 
24%, when computing the 64GiB-size problem by using only 
a half-size of 32GiB-DRAM. 

In contrast to AL-R, AL-NR is free from the redundant 
calculation overhead, and there is only the tradeoff in how the 
spatial and temporal blocking sizes share the fixed DRAM 
capacity. The globally optimal blocking size combination of 
spatial and temporal sizes can be determined by the search 
technique used in Blk-Tune. It is designed for reducing the the 
amount of read/write traffic between buffer arrays and block 
arrays, or in this case, the amount of I/O traffic between 
DRAM and flash. 

 

Fig. 6  Examples of read/write patterns aio5y for 3D block arrays 

 

Fig. 4 Comparison of out-of-core algorithms. Relative execution times of seven-point stencil computation  

 

Fig. 5  AL-NR: read/write patterns read/write between buffer arrays and block 
arrays in three algorithms, aio, aio3y, aio5y 



V. I/O-BASED OPTIMIZED ALGORITHMS 

In this section, the most efficient I/O-based AL-NR 
algorithms, aio3y and aio5y, are described in detail. Fig. 6 
shows how one block calculations proceed from block n to 
block n+1 in the next position in the y-dimension in this case. It 
also shows read/write areas in block arrays in one-block updates 
for three algorithms,  (1) aio in col. 4, (2) aio3y in col. 10, and 
(3) aio5y in col. 11 in Fig. 5. They have different read/write 
patterns. 

In aio and aio3y, the top and the second row of Fig. 6, both 
src and dst block arrays have the same manner of read/write 
from/to the buffer arrays, src and dst. In the basic algorithm, aio, 
Step1: each block array reads data from each buffer array, 
Step2: update block n in bt steps using the src and dst blocks , 
Step3: each block writes its data back to each buffer array. To 
reduce the amount of read/write traffic, aio3y introduces an 
additional step, Step4: the rightmost part of a block array is 
copied in the leftmost part in the same block, for reuse by the 
next block update in block n+1 in the right hand part of Fig. 6. 
Typically, the amount of reduced read/write is double that of of 
the copied area, (bt + h) × (bt + bz + 2h) . 

In aio5y, the src block array has the same manner as aio3y, 
but the dst block array has a different read/write pattern as 
shown in the bottom of Fig. 6. In the first update step using 
block arrays, the most part of the dst block array is updated 
before read. Thus, it is possible to reduce the read areas from 
the dst buffer array to the dst block array.  For the same reason, 
the write area in the dst block array to the buffer array can be 
reduced, because only a small area as shown in the bottom part 
of the dst array is used by the neighboring block in the z-
dimension. Fig. 7 shows the read/write patterns of the dst block 
array in aio5y for 3D  stencil computations. The read/write 
patterns are different for the position in the buffer array and 
block division scheme employed. The boundary conditions in 
the buffer arrays also cause different patterns. The central block 
in Fig. 6 is the typical case in 3D computation that corresponds 
to the 2D case in the bottom of Fig. 5. 

VI. PERFORMANCE EVALUATION 

In this section, the most effective I/O-based out-of-core 
stencil algorithm, aio5y and aio3y are evaluated for 3D-stencil 
problems ranging from 128 GiB to 2 TiB in data size by using 
128GiB main memory in the platforms, crest6 and crest10 in 
Table I. Flash devices used here are the latest cost-effective M.2 
NVMe flash, Samsung 950Pro (512GB) and 960Pro (2TB). 
They are configured as 1TB and 4TB devices for crest6 and 
crest10 individually by using software RAID0 to double their 
performance. Read/write bandwidths of various flash devices 

are shown in Fig. 7. They are measured by parallel AIO of actual 
sizes used in the 64GiB-stencil-problem in our algorithms.  

In this experiment, the best combinations of spatial and 
temporal blocking sizes for each stencil problem and platform  
are determined by Blk-Tune [3], as shown in Table II for crest10. 

 

Fig. 7   Read/write performance of the data sizes used in the 64GiB-stencil-
problem for various flash devices, (AIO, measured in crest4) 

TABLE I       PLATFORMS

 

server 
L1

cache
(KiB)

L2
cache
(KiB)

L3
cache
(MiB)

Phys
Mem
(GiB)

Flash
Mem
(TiB)

CPU
Xeon

E5,  (GiHz)

Total
cores

socket
cores/
socket

crest0 32 256 20 32 1.2 2650,  (2) 8 1 8

crest4 32 256 20 64 0.785 2687W, (3.1) 16 2 8

crest6 32 256 25 128 1 2687W v3,(3.1) 20 2 10

cres10 32 256 30 128 4 2687W v4,(3.0) 24 2 12

  

Fig. 8 Execution times and performances in aio3y and aio5y 

 

Fig. 9 Time components in aio3y and aio5y 

TABLE II   TEMPORAL & SPATIAL BLOCK SIZES FOR CREST10 BY BLK-TUNE 

problem size 512  GiB 1 TiB 2 TiB

nx, ny, nz 2048 x 4096 x 4096 4096 x 4096 x 4096 4096 x 4096 x 8192
nt 1000 1000 1000

bx, by, bz 2048 x 1025 x 2304 4096 x 683 x 1536 4096 x 683 x 1440
bt 500 334 334

ix, iy, iz 2048 x 1 x 192 4096 x 1 x 192 4096 x 1 x 192

block-division 1 x 4 x 2 1 x 6 x 3 1 x 6 x 6
Iteration 2 3 3

total num of blocks processed 16 54 108

max size of blocks 107.3 GiB 116.2 GiB 110.3 GiB



Blk-Tune retrieves platform hardware information and selects 
the best blocking parameters for a given problem and platform 
at runtime. It minimizes the amount of data transferred between 
buffer arrays (typically in the flash device) and block arrays (in 
the DRAM), which is a dominant factor affecting the 
performance of out-of-core algorithms using flash.  

A. Comparison of aio3y and aio5y 

The Fig. 8 shows the execution times and performance 
(Mflops) on crest6 for four problems (128 GiB, 500-step), (256 
GiB ,500-step), (256 GiB, 1000-step) , and (512 GiB, 1000-step) 
using aio3y and aio5y. The aio5y algorithm gains better 
performance than aio3y, except in the case of the 128 GiB 
problem that exists on the border between in-core and is out-of-
core computing. The overhead come from the algorithm 
complexity in aio5y becomes larger than that in aio3y for in-core 
computing. For the 512 GiB-problem, performance 
degradations in both algorithms are small. Fig.9 shows the time 
components of aio3y and aio5y for the same problems. The read 
(buf2blk) and write (blk2buf & blk2blk) time components are 
small in aio5y in compared to those in aio3y. 

B. The Performance of aio5y for Large-Size Problems 

By using 4-TiB flash, large-size stencil problems are 
evaluated by aio5y. Fig. 10 shows execution times, 
performances (Mflops), and relative performances for seven 
problems of 64 GiB – 2 TiB sizes by aio5y using 128-GiB main 
memory in crest10. All aio5y executions including the 2-TiB 
problem using 128-GiB memory are stable, unlike mmap5y, 
which is difficult to use for the execution of large size problems. 

 According to the relative performance in Fig. 11, the 
performance in the 512-GiB problem, where the DRAM ratio  
( the main memory size divided by the problem size) is 25%, 
achives 97% of the performance gained by the in-core 
computing in 64GiB-problem. Even in the 2-TiB problem case, 
where the DRAM ratio is only 6.25%, the performance 
maintains 80% of that in-core computing. The aio5y realizes 
sufficiently high performances. 

VII.  CONCLUSIONS 

This paper proposes the most efficient I/O-based out-of-core 
stencil algorithm for large-capacity type of NVM, such as flash.   
The paper also evaluates the advantages and disadvantages of 
various out-of-core stencil algorithms and implementations 
designed for flash, by using state-of-the-art flash devices. We 
believe it is the first review of flash-based out-of-core stencil 

computations. Among these, the most efficient I/O-based out-
of-core stencil algorithms, aio3y and aio5y, are described in 
detail and their performance is evaluated. They achieve 97% and 
80% of in-core computing  performance with sufficient memory, 
for out-of-core computing of 512-GiB and  2-TiB problems with 
only 128 GiB-DRAM and a cost-effective flash NVM. The I/O-
based algorithms show not only high performance but also 
highly stable behavior. Moreover, they can use globally optimal 
blocking sizes which can be calculated precisely and achieve the 
best performance for a given platform and problem. With the use 
of the algorithms, large-scale stencil problems can be solved 
with limited main memory size, such as that in a personal work-
station. 
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