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Abstract—Various partitioned global address space (PGAS) 
languages capable of providing global-view programming 
environments on multi-node computer systems have been 
proposed to improve programming productivity in high-
performance computing. However, several PGAS languages often 
require a detailed description of the remote data access, similar to 
descriptions used in message passing interface one-sided 
communications. Some PGAS languages have limitations 
pertaining to remote data access and recommend their local-view 
programming models, rather than the global-view ones, due to 
performance-related reasons. In this study, we propose SMint, 
which is an application programming interface that provides a 
global-view programming model with a software distributed 
shared memory mSMS as the runtime. Using stencil computation 
as a typical processing method, the performance and 
programmability of SMint have been compared with those of 
XcalableMP and Unified Parallel C, which are well-known 
examples of PGAS languages based on the C language. It was 
found that SMint achieved the best performance under the ideal 
global-view programming model.  

Keywords—PGAS, directive-based language, API, global-view 
programming, global address space, parallel language, software 
distributed shared memory, cluster, shared memory programming, 
multi-node processing, programming model 

I. INTRODUCTION  

In high-performance computing, parallel programming with 
MPI+X (OpenMP [1], OpenACC [2]) is widely used in order to 
extract the best performance from multiple computing nodes and 
multiple cores within such nodes. On the other hand, various 
languages and application programming interfaces (APIs), 
generally referred to as partitioned global address space (PGAS) 
models, have been proposed [3–5] to improve the low 
productivity of program model that uses a message passing 
interface (MPI) distributed memory model. The PGAS 
languages usually provide a global-view programming 
environment by enabling the use of global data arrays and global 
indexes over multiple computing nodes, unlike the local-view 
programming model used in an MPI. However, many PGAS 
languages have limitations pertaining to the accessible range of 
remote data. To access the remote data, some of these languages 
also require special descriptions, such as coarray descriptions [6], 
which involve specifying the ID number of the node containing 
the data to be accessed. This is significantly different from the 

typical shared-memory parallel programming model but is 
rather similar to the descriptions of the one-sided 
communication (get/put) seen in MPIs. In most of the PGAS 
languages, a global address space is not provided as part of the 
execution processes in a true sense, but, the special PGAS APIs 
mentioned above are converted to lower-level communication 
library function calls (e.g., an MPI get/put) by a dedicated PGAS 
compiler. In other words, there are few systems that allow all 
node processes to share the same address space and enable 
access through C-language pointers and addresses. Moreover, 
due to performance- and implementation-related issues, in 
practice, several PGAS languages often recommend using 
explicit descriptions of data communications and descriptions 
using a local-view model similar to those in MPIs. 

XcalableMP (XMP) [4], which is an example of a PGAS 
language, is an extension of the C language (or Fortran), and has 
a directive-based API. It extends C to offer for-loop 
parallelization, data distributed mapping, block assignment 
statements for array data, and related functionalities. Unified 
Parallel C (UPC) [5,10] is another PGAS language based on C. 
It includes new syntax and grammar, such as upc_forall 
statements, and has loop parallelization and distributed data 
mapping functions. It also introduces a global array data 
declaration statement with distributed mapping specifiers. 

We use the mSMS distributed shared memory system [11–
13] as a runtime in order to achieve a global-view programming
environment across multiple nodes. Three programming APIs 
are available in mSMS: (1) a C program using SMS library 
functions, (2) MpC-language descriptions introducing the global 
data declarative statement “shared” for easily distributable 
mapping of global shared data in multiple nodes [13], and (3) 
SMint [14], a directive-based API which enables multi-node–
multi-core parallel processing by adding #pragma to a sequential 
C program. 

Table 1 shows a comparison of the three aforementioned 
languages. In XMP, the possible processing that can be 
described in the global view model is very limited because of 
the limitations in the accessible global data area. C pointers for 
global data are not available in XMP, although it is based on C. 
On the other hand, in SMint and UPC, there are no restrictions 
on accessible global data area, and programming with pointers 
is also possible. In SMint, ordinary pointers used in C 
programming are available to point both global and local data. 
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Thus, it provides a seamless data access environment without 
changing data access APIs according to the data location (global 
or local). The mSMS runtime determines whether the data to be 
accessed is remote or local and fetches data from the appropriate 
remote node at runtime. In UPC, on the other hand, pointers 
pointing to global data and to local data are defined clearly as 
different data types. The UPC pointer variable itself is also 
distinguished as either a shared pointer or a local pointer; hence, 
there are four types of pointers. By using this explicit distinction, 
the UPC compiler can statically distinguish global and local data 
accesses. The compiler statically converts global data accesses 
to data transfer descriptions using appropriate communication 
mechanisms. Type conversion from local to global is therefore 
accompanied by an overhead. 

Predominantly, both XMP and UPC depend on conversion 
of their programs to ones with low-level communication 
descriptions, based on static analysis by a dedicated compiler. 
Thus, the load on their runtime system is smaller than that on 
mSMS runtime systems. On the other hand, SMint has almost 
no syntax extensions from the C language, and it mainly uses a 
simple translator to insert SMS library functions into a C 
program. It uses a general C compiler (gcc). The underlying 
mSMS distributed shared memory system performs dynamic 
processing at runtime.  

In this study, we compare the programmability and 
performance of SMint, XMP, and UPC as PGAS languages that 
support global-view models based on the C language. Stencil 
computation, which is one of the typical scientific computations, 
is implemented for the three languages with a global-view model, 
for the evaluation. 

II. PARALLEL PROGRAMMING IN SMINT/MSMS 

The distributed shared memory system mSMS [12] enables 
users to choose one of three APIs depending on the application 
type and their requirements [14]. All the APIs are converted into 
C programs using the SMS library functions shown at the 
bottom of Fig. 1.  

A. C Programs from the use of SMS Library Functions  

The first API is a C program using SMS library functions. 
Because sms_rank and sms_nprocs—corresponding to the MPI 
rank number and number of processes, respectively—are 
available, different processing actions for each node can be 
described. Fig. 2 shows a matrix-vector product program. Global 
data shared across multiple nodes is dynamically allocated using 
sms_alloc or sms_mapalloc. While sms_alloc allocates global 
data of a specified size to a specified node, sms_mapalloc is 

mainly used for distributed mapping of global data arrays. It 
specifies the number of fractions for each dimension of the array 
and performs distributed mapping of the array data cyclically 
over the multiple specified nodes [13].  

B. MpC Programs with Global Data Type Array Declaration 

The second API is an MpC program that can use 
multidimensional array declarations with data distribution 
mapping specifications, as shown in Fig. 3. An array declaration 
statement concerning shared data in MpC programming [11] is 
converted to sms_mapalloc. It is known that MpC is a minimal 
extension of C [13] and that it enables global-type array 

TABLE I.  COMPARISON OF UPC, XCALABLEMP, AND SMINT 

mSMS
(+MpC)

Access to Anywhere
global data (shared data)
Use pointer Possible Impossible Possible Possible

Runtime load Light Light Heavy Heavy
Dedicated 
Compiler

Required Required
Unnecessary

(Simple translator)
Simple 

translator
Directive-based

programming
Not Available Available Not Available Available

UPC XcalableMP SMint

sleeve or 
gmove

Anywhere Anywhere

 
 

Fig. 1 Programming environment on mSMS 

 

 
 

Fig. 2  C program with SMS library functions 
 

 
 

Fig. 3 MpC program with shared data declaration 

#include <mpc.h> // C program by using MpC（shared data declaratiion）
#define N …
shared double vec1[N] ::[1](0,1) ; // Mapping to node0
shared double vec2[N] ::[1](1,1) ; // Mapping to node1
shared double array[N][N] ::[NPROCS][](0,NPROCS) ; 

//Distributed mapping to all nodes 
int main(int argc, char *argv[] )
{ int size, st, ed;  //Area of each node

mpc_init(&argc, &argv);

size=N/NPROCS;  
st=size * MYPID; ed=size * (MYPID+1); //Area of each node

#pragma omp parallel for   //Multithreaded parallel execution in each node
for( i=st; i<ed; i++){        // Parallel execution of for(i=0; i<N; i++) in all nodes 

for(k=0; k<N; k++)    
vec2[i]= array[i][k] * vec1[k]; //Matrix-vector multiplication

}
mpc_barrier();
mpc_exit();

} 



declarations using shared. In scientific simulations, array 
descriptions are often preferred to dynamic allocation, such as 
sms_alloc or sms_mapalloc. The MpC program is converted to 
an equivalent C program, as shown in Fig. 2, by the MpC 
translator. 

C. SMint Incremental Programming 

The third API, SMint [14], is a directive-based API. As with 
OpenMP or OpenACC, adding pragma SMint to the for-loop 
statements in sequential programs enables conversion of these 
programs to multi-node parallel programs. SMint provides 
incremental programming from sequential programs in a simple 
way. Moreover, data localizing instructions (copyin, copyout, 
copy, create, etc.) that perform batch data transfer from or to a 
remote node, before or after multi-node parallel sections can be 
added. Using this specification, necessary data can be prefetched 
to the local node prior to the start of the parallel section, which 
boosts the performance of computation in the parallel section. It 
also improves the efficiency of data consistency management 
and local node cache handling at the end of parallel sections. In 
a case without such data localizing specification, mSMS detects 
remote data accesses at runtime and fetches the required data 
from the remote node in SMS-pagesize units. Fig. 4 shows the 
SMint program. Fig. 4 shows a different version of the matrix-
vector product programs shown in Figs. 2 and 3. In Fig. 4, vec2 
is distributed across all nodes and remote data vec1 is prefetched 
using the copyin instruction. 

III. PARALLEL PROGRAMMING IN XMP AND UPC  

This section outlines the two PGAS languages, XcalableMP 
and UPC, which were used for comparison with SMint. 

A. Overview of XcalableMP 

XcalableMP (XMP) [4] is a directive-based PGAS language 
for distributed memory systems, providing two programming 
models; a global-view model and a local-view model. In global-
view programming, data distribution mapping and process 
distribution mapping (work mapping) are specified as pragma 
directives. Fig. 5 shows examples of data and work mappings in 
XMP and SMint. They are similar programs but differ in 
execution. In XMP, the data access in a for statement is limited 
to local data, and a range of global array a[N] is allocated to the 
local node by a template t[N] specification. On the other hand, 
SMint has no restriction in the accessible range of a[N]. The 
underlying runtime system mSMS fetches the remote node data, 
if necessary, during the for loop execution.  

Fig. 6 shows description examples of typical stencil 
calculations for XMP and SMint. XMP, shown in Fig. 6(a), uses 
shadow and reflect constructs for prefetching sleeve areas. 
SMint, shown in Fig. 6(b), uses the scopy directive. Descriptions 
in both XMP and SMint increase the performance of their 
parallel-for execution by prefetching the data required in 
advance. 

Fig. 7 shows descriptions of global data copy in XMP and 
SMint. In XMP, the gmove construct is necessary for global data 
copy, as shown in Fig. 7(a). In this example, a[0]–a[9] in node 0 
are copied to a[50]–a[59] in node 2. A data block assignment 
statement is available in XMP. The decision for the gmove 
construct usage depends on whether a[0]–a[9] and a[50]–a[59] 
are mapped in the same node or in different nodes. In other 
words, it is always necessary to know the mapped location of 

  
Fig. 4 SMint program with a copyin directive  

 
(a) XMP program 

 
(b) SMint program 

 
Fig. 5 Data mapping and work mapping in XMP and SMint 

 
(a) XMP program with shadow & reflect directives 

 
(b) SMint program with a scopy directive 

 
Fig. 6 Prefetch sleeve area in XMP and SMint 

…
#pragma xmp shadow a[1][0] //Declaration of sleeve area
…
int main(){ 

int I,j;
#pragma xmp reflect (a) //Prefetch sleeve area
#pragma xmp loop on t[i] //work mapping

for(i=0; i<NY; i++)
if(i==0 || i==NY-1) continue;
for(j=1; j<NX-1; j++)

b[i][j] = 0.4*a[i][j] + 0.15*(a[i-1][j] + a[i+1][j] + a[i][j-1] + a[i][j+1]);

return 0;
}

…
int main(){ 

int i;
#pragma SMint parallel for scopyin(a[1][0]) //work mapping and prefetch sleeve area

for(i=0; i<NY; i++)
if(i==0 || i==NY-1) continue;
for(j=1; j<NX-1; j++)

b[i][j]= 0.4*a[i][j] + 0.15*(a[i-1][j] + a[i+1][j] + a[i][j-1] + a[i][j+1]);

return 0;
}



global data, although the array name “a” and index “i” can be 
used in the global namespace. In contrast, SMint provides 
seamless global data accessing independent of the location of 
global data. Therefore, SMint description is the same as that in 
a regular C program, as shown in Fig. 7(b). There data location 
can be ignored.  

In summary, global-view programming in XMP, which 
provides global data namespace and global data access, is only 
available in two cases: (1) access to sleeve areas by using 
shadow and reflect construct and (2) copy of global data by 
using gmove construct. This limitation in XMP reduces the 
variety of XMP applications in the global-view model.  

On the other hand, the global view description in Fig. 7(a) 
can be rewritten to the local view description in Fig. 8. The 
global array a[100] is viewed as four arrays of a[25] in the XMP 
local-view model shown in Fig. 8. The local-view model uses 
“coarray notation”, which consists of a local array with local 
indexes followed by a “:” and the node ID number. In several 
PGAS languages, block data assignments using a coarray 
notation are directly converted to MPI one-sided 
communications.  

B. Overview of Berkeley-UPC 
UPC [5,10] is one of the PGAS languages for distributed 

memory systems and Berkeley-UPC [7] is one of its 
implementations. In UPC, parallel processing is performed 
during an execution entity called THREAD, and THREADS is 

the total number of THREAD(s). A UPC THREAD is not a 
thread; it is closer to a process. In UPC, it is possible to declare 
shared data in the global address space by adding the extended 
data type shared in front of the normal data declaration 
statements in C. Moreover, it is also possible to use pointers to 
point to data in the global address space. The array distributed 
mapping to THREADs is, by default, a single-element cyclic 
distribution, as shown in the first line of Fig. 9. By inserting the 
block size specification between shared and data type, as shown 
in the second line of Fig. 9, a block cyclic distributed mapping 
can be described.  

As a result of the UPC language specification, it is 
impossible to distinguish between a local node THREAD and a 
remote node THREAD in UPC programs (the THREAD layout 
can be determined at compile time as -pthread = “number of 
THREADS per node” and at execution time by specifying the 
number of compute nodes). On the other hand, SMint and XMP 
provide two levels of parallel processing. Multi-node parallel 
and multi-core parallel in one node can be specified 
independently using an individual pragma statement, for 
example, pragma SMint and pragma OMP. Threads in the same 
compute node can access shared data efficiently without an 
overhead between remote nodes. In UPC, even where data are 
within the same node, access to the data of another THREAD 
(process) is obtained as global data access using a shared pointer, 
thus causing extra overhead. 

Besides the existing library functions, UPC adds new syntax 
to the C language. In upc_forall, one of the new syntaxes, the 
fourth specification (affinity setting) is added to the for 
statement in C, which specifies the address of data the process 
will access. In Fig. 10, the THREAD holding b[i] executes 
iteration i.  

The global and local view programs in UPC are shown in 
Fig. 11. Both programs describe the same 1D, three-point stencil 
processing. In Fig. 11(a), processing for shared array a[400] is 
described in the global view model, whereby the program itself 
is very simple. However, the recommended version of 
programming, for improved performance, is based on a local-
view model using local pointer pa and local index i, as shown in 
Fig. 11(b). In this program, local pointer pa is set to point to the 
first element of the subarray of a[400], which is mapped to the 
local THREAD. Using a local pointer pa pointing local subarray 
boosts the stencil calculation performance. Shared array a and 
global indexing is only used for the sleeve calculations. Thus, 
the main part of the program is a description of local array 
pa[100] using a local index (i = 0–99), which is no longer 
different from the MPI programming. 

 
(a) XMP program 

 
(b) SMint program 

 
 

Fig. 7 Global data copy in XMP and SMint  
global-view model 

#pragma xmp nodes p[*]
#pragma xmp template t[100]
#pragma xmp distribute t[block] onto p
int a[100];
#pragma xmp align a[i] with t[i]
…
#pragma xmp gmove

a[50:10] = a[0:10];  

#pragma SMint shared ::[NPROCS] (0,NPROCS)
int a[100];
…
for(i=0; i<10; i++)

a[50+i] = a[i];

a[100]

node 0 node 1 node 2 node 3node 0 can access
this area (in XMP)

gmove

100

any node can access
any area (in SMint)

 

 
 

Fig. 8 Data copy using Coarray description  
in XMP local-view model 

int rank = xmpc_this_image();
int a[25]:[*];

if(rank==0)
a[0:10]:[2] = a[0:10];

Coarray description
a[index]:[node num]

 
Fig. 9 Declaration of global data in UPC 

 

 
Fig. 10 A upc_forall statement in UPC 

shared double a[100]; //1 element cyclic
shared [100/THREADS] double b[100]; //block size is 100/THREADS

//The process holding b[i] executes the iteration
upc_forall(i=0; i<100; i++; &b[i]){

b[i]=…
}



IV. THE PROGRAMMABILITY COMPARISON 

A stencil calculation, one of the most typical and important 
calculation kernels in scientific computations, was used for the 
comparison in this study, because it is one of the few 
applications that can be implemented with the XMP global view 
model. 

A. Data size limitations in UPC 
In UPC, there is an upper limit on the block size of 

distributed mapping in the shared array declaration displayed in 
Fig. 9. The internal expression of the UPC shared pointer 
consists of three fields: block element size, number of 
THREADs, and memory address space per THREAD. The 
maximum available block size in the current version of UPC 
struct-based pointer [7] is only 31 bits = 2G elements. This 
means that the available mapped data size per THREAD is 
limited. Considering this limitation, two 2D data arrays with 
65,536 ×  65,536 elements were used for strong scaling 
performance measurements on multiple nodes larger than four 
nodes. Hence, the simplest five-point stencil calculation for 
comparatively small-size 2D arrays (64 GiB in total) was 
employed in this study. 

B. SMint, XMP, and UPC programs in Global View Model 
The 2D five-point stencil calculation was implemented in 

three languages and the programmability among them was 
compared. Figs. 12, 13, and 14 show the skeleton code of the 
stencil calculations implemented in each of the SMint, XMP, 
and UPC. Upon comparing SMint and XMP, we see that XMP 
requires more pragma directive statements than SMint. The 
UPC program in Fig. 14 (global pointer version) is based on 
global-view programming, which provides simple description 
and is easy to read. In contrast to the UPC program, SMint and 

XMP programs introduce two-level parallelism by adding an 
OpenMP pragma for multi-core parallelism in addition to multi-
node parallelism. 

 
 

 
 

Fig. 12 A 2D five-point Stencil skeleton in SMint 

 

 
 

Fig. 13 A 2D five-point Stencil skeleton in XMP 

 
(a) Global view model in UPC 

 
(b) Local view model in UPC 



C. UPC Programs in Local View Model 

To improve the performance of UPC programs, use of local 
view descriptions is recommended. In this section, two UPC 
programs using local view model are introduced alongside the 
global pointer version, as shown in Fig. 17. The performance of 
both the programs was evaluated through a comparison with the 
global-view program. The first one (local pointer version), 
shown in Fig. 15, uses a local pointer pa for the majority of the 
stencil calculations. The local pointer pa points to the first 
element of the range of the shared array a[ ], mapped in the local 
node. The global pointer description using array a is used only 
for accessing the sleeve area in the upper and lower adjacent 
nodes, which are added separately beside the descriptions of 
calculation using pa. 

The second program (upc_alloc version) is shown in Fig. 16. 
This program was developed with reference to the UPC 
programs in Parallel Research Kernel [15]. It uses a upc_alloc 
function instead of shared array declaration statements, to avoid 
the block size limitation in the shared data statements, as 
described previously. Array a[NY][NX] is split into subarrays, 
a[LY][NX], managed by each node (where 
LY=NY/THREADS), and allocated separately using upc_alloc. 
The program uses an array of the shared pointer pointing to a 
shared array, that is, a[MYTHREAD], and a local pointer 
pointing shared data array, pa. The program uses the local 
pointer pa when accessing the local data in local THREAD, and 
it uses the shared pointer a when accessing remote data in other 
THREADS. 

The local-view programs, shown in Figs. 15 and 16, are 
more complex compared to the global-view program, shown in 
Fig. 14. Many complicated pointer definitions and usages, 
shown in Fig. 16, hinder program readability and degrade 
program development productivity. It is difficult to determine 
conclusively whether local-view UPC programs provide a more 
efficient programming environment in comparison to the one 
MPI programs provide. 

 
 

Fig. 15 A 2D five-point Stencil skeleton in UPC (local pointer 
version.) 

 

 
 

Fig. 16 A 2D five-point Stencil skeleton in UPC (upc_alloc version.) 

#include …
#include <upc_relaxed.h>
…
#define LY  NY/THREADS //local size of Y
shared [LY * NX] double a[NY][NX];
shared [LY * NX] double b[NY][NX];

int main(int argc, char **argv){
int x,y,t;

//local pointer
double (*pa)[NX] = (double (*)[NX]) &a[LY * MYTHREAD][0];
double (*pb)[NX] = (double (*)[NX]) &b[LY * MYTHREAD][0];

//Array Initialize
…

for(t=0; t<NT; t++){ //time step
if(t%2==0){ //phase 1 : b=a
if(MYTHREAD > 0){ //upper sleeve
y=0;
for(x=1; x<NX-1; x++){

pb[y][x] = 0.4*pa[y][x] + 0.15*(a[LY*MYTHREAD-1][x] + pa[1][x] + pa[y][x-1] + pa[y][x+1]);
}

}
for(y=1; y<LY-1; y++;){
for(x=1; x<NX-1; x++){

pb[y][x] = 0.4*pa[y][x] + 0.15*(pa[y-1][x] + pa[y+1][x] + pa[y][x-1] + pa[y][x+1]);
}

}
if(MYTHREAD < THREADS-1){ //lower sleeve
y=LY-1;
for(x=1; x<NX-1; x++){

pb[y][x] = 0.4*pa[y][x] + 0.15*(pa[y-1][x] + a[(MYTHREAD+1)*LY][x] + pa[y][x-1] + pa[y][x+1]);
}

}
else{ //phase2 : a=b
…
}
upc_barrier;  

}// time step end

return 0;
}

THREAD 0

THREAD 1

...

THREAD THREADS-1

NX

NY

LY

NX
LY

private

shared
LY

NX NX
LY

THREAD0 THREAD1 …

…

THREAD THREADS-1

pa pb pa pb pa pb pa pb

#include …
#include <upc_relaxed.h>
…
#define LY NY/THREADS

//local pointer to shared block
typedef shared [] double * local_shared_block;
typedef shared [] local_shared_block *local_shared_block_ptrs;

//pointer array for global access
shared [1] local_shared_block_ptrs a[THREADS];
shared [1] local_shared_block_ptrs b[THREADS];

int main(int argc, char **argv){
int x,y,t;

local_shared_block_ptrs pa = upc_alloc(sizeof(local_shared_block) * LY);
local_shared_block_ptrs pb = upc_alloc(sizeof(local_shared_block) * LY);

local_shared_block tmp_a = upc_alloc(sizeof(double) * LY * NX);
local_shared_block tmp_b = upc_alloc(sizeof(double) * LY * NX);

for(y=0; y<LY; y++){ // align
pa[y] = tmp_a + (y * NX);
pb[y] = tmp_b + (y * NX);

}

//set local pointer to shared pointer array
a[MYTHREAD] = pa;
b[MYTHREAD] = pb;

//Array Initialize
…
for(t=0; t<NT; t++){ //time step

if(t%2==0){ //phase 1 : b=a
if(MYTHREAD > 0){ //upper sleeve
y=0;
for(x=1; x<NX-1; x++){

pb[y][x] = 0.4*pa[y][x] + 0.15*(a[MYTHREAD][LY-1][x] + pa[1][x] + pa[y][x-1] + pa[y][x+1]);
}

}
for(y=1; y<LY-1; y++;){
for(x=1; x<NX-1; x++){

pb[y][x] = 0.4*pa[y][x] + 0.15*(pa[y-1][x] + pa[y+1][x] + pa[y][x-1] + pa[y][x+1]);
}

}
if(MYTHREAD < THREADS-1){ //lower sleeve
y=LY-1;
for(x=1; x<NX-1; x++){

pb[y][x] = 0.4*pa[y][x] + 0.15*(pa[y-1][x] + a[MYTHREAD+1][0][x] + pa[y][x-1] + pa[y][x+1]);
}

}
else{ //phase2 : a=b
…
}

upc_barrier;
}// time step end

return 0;
}

a[ ] b[ ]

NX
LY

private

shared
THREAD THREADS-1THREAD0 …THREAD1

pa pb pa pbpa pb pa pb

a[0] b[0] a[...] b[...]a[1] b[1]
THREADS-1

 

 
 

Fig. 14 A 2D five-point Stencil skeleton in UPC (global pointer 
version) 



V. THE PERFORMANCE COMPARISON  

A. Experimental Environment 
 In this experiment, Omni XMP Compiler version 1.3.2 and 

Berkeley–UPC Compiler version 2.28.0 were used for XMP and 
UPC, individually. SMint and XMP used MPI, and UPC used 
GASNet’s [8] MPI_conduit as the method of communication 
between nodes. The Tsubame 3.0 supercomputer, shown in 
Table 2, was used for performance measurements.  

B. Local and Global View Descriptions in UPC Programs 
The performance of the three UPC descriptions, i.e., the 

upc_alloc version shown in Fig. 16, the global pointer version 
shown in Fig. 14, and the local pointer version shown in Fig 15, 
were investigated. Fig. 17 shows the execution times of the five-
point stencil calculation (10 step iterations) carried out for a 2D 
array (64K × 64K elements, double) while using two computer 
nodes and 4–64 UPC THREADS in total. The execution time of 
the upc_alloc version was longer than those of the other two 
versions. While using four THREADS, the execution of the 
local pointer version was 13.1 times faster than that of the 
upc_alloc version, and 5.5 times faster than that of the global 
view version. The performance of all the versions of the UPC 
programs was accelerated by increasing the number of 
THREADS from 4 to 64. 

C. Performance on a Various Number of Nodes and Threads 
Fig. 18(a), (b), and (c) show the performance profiles of UPC, 

XMP, and SMint programs, respectively, while using various 
combinations of the number of nodes (2–16) and the number of 
threads per node (1–32).  

 Fig. 18(a) shows the execution times of the UPC local 
pointer version (which was depicted in Fig. 15). The best 
execution time was observed to be 10.7 s, achieved while using 
2 nodes and 32 threads/node. In the case of the UPC local pointer 
version, the performance generally improved while using a 
small number of nodes and a large number of threads per node. 
On the other hand, the performance of UPC global pointer 
version improved while using a higher number of nodes and 
threads per node. Upon using more than two nodes, the 
performance of the global pointer version exceeded that of the 
local pointer version. 

In Fig. 18(b), the best execution time recorded for XMP was 
1.6 s when using 16 nodes and 8 threads per nodes. The XMP 
performance generally declined upon increasing the number of 
threads per node. In the case of the XMP, 8 or 16 were the 
optimal numbers of threads per node.  

Fig. 18(c), shows the best execution time recorded in the 
case of SMint, i.e., 1.5 s while using 16 nodes and 32 threads per 
node. By increasing the number of nodes and threads per node, 
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(b) XMP 

 
(c) SMint 

 
Fig. 18 Execution times in three languages 

(2-16 nodes 1-32 threads/node) 

TABLE II.  ENVIRONMENT ON TSUBAME3.0 

CPU Intel Xeon CPU E5-2680 v4 @ 2.40GHz * 2CPU
Num of Core / Threads 14 Core / 28 Threads
Memory 256GiB
Network Intel Omni-Path HFI 100Gbps *4
OS SUSE Linux Enterprise Server 12 SP2
Compiler gcc 4.8.5
MPI intel-mpi/18.1.163

 
Fig. 17  Execution times on three implementation methods of UPC 



the SMint program achieved a shorter execution time, which 
was a different tendency noticed when considering the other two 
programs (XMP and UPC local pointer versions). 

D. Comparison of the Performance of the Three Languages 
 Fig. 19 shows a graph depicting the best execution times for 

each program upon using the specified number of nodes. In the 
cases where more than two nodes were used, the UPC execution 
times were 2.7–10.3 times slower than those of XMP and SMint. 
In contrast, upon comparing the results for SMint and XMP, the 
execution times obtained for SMint were 6–30% faster than 
those of XMP for any number of nodes. 

VI. CONCLUSION 

In this study, the programmability and performance of 
global-view programming in SMint, XcalableMP, and UPC 
have been investigated using stencil computation. They are 
typical PGAS languages based on the C language and are 
available for multi-node and multi-core computations. 

The global-view programming in XMP is only available in 
two cases: (1) access to sleeve areas using the shadow and reflect 
constructs and (2) copy of global data using the gmove construct. 
This limitation makes it difficult to use XMP for various 
applications. It is for this reason that stencil computation was 
employed for the global-view programming comparison in the 
study. The XMP performance in the stencil computation was 
approximately the same as the SMint performance. 

In UPC, the global view program that utilizes shared data 
declaration statements is simple and supports high readability 
but performs poorly compared to XMP and SMint. Moreover, 
UPC global-view programs cannot be used for large-scale 
calculations since the global data array declaration cannot be 
used for large-scale data mapping when using several nodes. 
There is no alternative other than to employ the UPC local view 
programs using upc_alloc, local pointers, local arrays, and local 
array indexes. The UPC local-view descriptions usually have 
low readability and productivity because of the complicated 
pointer manipulations needed to access the local and shared data, 
as shown in Fig. 16. 

In conclusion, there are several difficulties in programming 
in XMP and UPC when using a global-view model that supports 

a genuine global address space. Moreover, it was found that 
there were limitations on applicable computations and the global 
data sizes that can be handled successfully. 

SMint can access both global and local data seamlessly by 
using ordinary C pointers, and there are no restrictions on 
accessible global data areas. This is due to the underlying mSMS 
providing flexible remote data access capability at runtime. In 
mSMS, processes share a large virtual address space—that 
exceeds the size of the local physical memory run on each 
calculation node—and are executed in parallel. On the other 
hand, several PGAS languages usually employ static analysis 
and optimization by their compiler and a direct translation from 
the remote data access to MPI get/put communications. SMint 
on mSMS has a more dynamic mechanism and thus, it can be 
used for various applications. 
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