
Programmability and Performance of
New Global-View Programming API

for Multi-Node and Multi-Core Processing

Yugo Sakaguchi
Graduate School of Science and Technology

Seikei University
Tokyo, Japan

dm186204@cc.seikei.ac.jp

Hiroko Midorikawa
Graduate School of Science and Technology

Seikei University
Tokyo, Japan

midori@st.seikei.ac.jp

Abstract—Various partitioned global address space (PGAS)
languages capable of providing global-view programming
environments on multi-node computer systems have been
proposed to improve programming productivity in high-
performance computing. However, several PGAS languages often
require a detailed description of the remote data access, similar to
descriptions used in message passing interface one-sided
communications. Some PGAS languages have limitations
pertaining to remote data access and recommend their local-view
programming models, rather than the global-view ones, due to
performance-related reasons. In this study, we propose SMint,
which is an application programming interface that provides a
global-view programming model with a software distributed
shared memory mSMS as the runtime. Using stencil computation
as a typical processing method, the performance and
programmability of SMint have been compared with those of
XcalableMP and Unified Parallel C, which are well-known
examples of PGAS languages based on the C language. It was
found that SMint achieved the best performance under the ideal
global-view programming model.

Keywords—PGAS, directive-based language, API, global-view
programming, global address space, parallel language, software
distributed shared memory, cluster, shared memory programming,
multi-node processing, programming model

I. INTRODUCTION

In high-performance computing, parallel programming with
MPI+X (OpenMP [1], OpenACC [2]) is widely used in order to
extract the best performance from multiple computing nodes and
multiple cores within such nodes. On the other hand, various
languages and application programming interfaces (APIs),
generally referred to as partitioned global address space (PGAS)
models, have been proposed [3–5] to improve the low
productivity of program model that uses a message passing
interface (MPI) distributed memory model. The PGAS
languages usually provide a global-view programming
environment by enabling the use of global data arrays and global
indexes over multiple computing nodes, unlike the local-view
programming model used in an MPI. However, many PGAS
languages have limitations pertaining to the accessible range of
remote data. To access the remote data, some of these languages
also require special descriptions, such as coarray descriptions [6],
which involve specifying the ID number of the node containing
the data to be accessed. This is significantly different from the

typical shared-memory parallel programming model but is
rather similar to the descriptions of the one-sided
communication (get/put) seen in MPIs. In most of the PGAS
languages, a global address space is not provided as part of the
execution processes in a true sense, but, the special PGAS APIs
mentioned above are converted to lower-level communication
library function calls (e.g., an MPI get/put) by a dedicated PGAS
compiler. In other words, there are few systems that allow all
node processes to share the same address space and enable
access through C-language pointers and addresses. Moreover,
due to performance- and implementation-related issues, in
practice, several PGAS languages often recommend using
explicit descriptions of data communications and descriptions
using a local-view model similar to those in MPIs.

XcalableMP (XMP) [4], which is an example of a PGAS
language, is an extension of the C language (or Fortran), and has
a directive-based API. It extends C to offer for-loop
parallelization, data distributed mapping, block assignment
statements for array data, and related functionalities. Unified
Parallel C (UPC) [5,10] is another PGAS language based on C.
It includes new syntax and grammar, such as upc_forall
statements, and has loop parallelization and distributed data
mapping functions. It also introduces a global array data
declaration statement with distributed mapping specifiers.

We use the mSMS distributed shared memory system [11–
13] as a runtime in order to achieve a global-view programming
environment across multiple nodes. Three programming APIs
are available in mSMS: (1) a C program using SMS library
functions, (2) MpC-language descriptions introducing the global
data declarative statement “shared” for easily distributable
mapping of global shared data in multiple nodes [13], and (3)
SMint [14], a directive-based API which enables multi-node–
multi-core parallel processing by adding #pragma to a sequential
C program.

Table 1 shows a comparison of the three aforementioned
languages. In XMP, the possible processing that can be
described in the global view model is very limited because of
the limitations in the accessible global data area. C pointers for
global data are not available in XMP, although it is based on C.
On the other hand, in SMint and UPC, there are no restrictions
on accessible global data area, and programming with pointers
is also possible. In SMint, ordinary pointers used in C
programming are available to point both global and local data.

978-1-7281-2794-1/19/$31.00 ©2019 IEEE

Thus, it provides a seamless data access environment without
changing data access APIs according to the data location (global
or local). The mSMS runtime determines whether the data to be
accessed is remote or local and fetches data from the appropriate
remote node at runtime. In UPC, on the other hand, pointers
pointing to global data and to local data are defined clearly as
different data types. The UPC pointer variable itself is also
distinguished as either a shared pointer or a local pointer; hence,
there are four types of pointers. By using this explicit distinction,
the UPC compiler can statically distinguish global and local data
accesses. The compiler statically converts global data accesses
to data transfer descriptions using appropriate communication
mechanisms. Type conversion from local to global is therefore
accompanied by an overhead.

Predominantly, both XMP and UPC depend on conversion
of their programs to ones with low-level communication
descriptions, based on static analysis by a dedicated compiler.
Thus, the load on their runtime system is smaller than that on
mSMS runtime systems. On the other hand, SMint has almost
no syntax extensions from the C language, and it mainly uses a
simple translator to insert SMS library functions into a C
program. It uses a general C compiler (gcc). The underlying
mSMS distributed shared memory system performs dynamic
processing at runtime.

In this study, we compare the programmability and
performance of SMint, XMP, and UPC as PGAS languages that
support global-view models based on the C language. Stencil
computation, which is one of the typical scientific computations,
is implemented for the three languages with a global-view model,
for the evaluation.

II. PARALLEL PROGRAMMING IN SMINT/MSMS

The distributed shared memory system mSMS [12] enables
users to choose one of three APIs depending on the application
type and their requirements [14]. All the APIs are converted into
C programs using the SMS library functions shown at the
bottom of Fig. 1.

A. C Programs from the use of SMS Library Functions

The first API is a C program using SMS library functions.
Because sms_rank and sms_nprocs—corresponding to the MPI
rank number and number of processes, respectively—are
available, different processing actions for each node can be
described. Fig. 2 shows a matrix-vector product program. Global
data shared across multiple nodes is dynamically allocated using
sms_alloc or sms_mapalloc. While sms_alloc allocates global
data of a specified size to a specified node, sms_mapalloc is

mainly used for distributed mapping of global data arrays. It
specifies the number of fractions for each dimension of the array
and performs distributed mapping of the array data cyclically
over the multiple specified nodes [13].

B. MpC Programs with Global Data Type Array Declaration

The second API is an MpC program that can use
multidimensional array declarations with data distribution
mapping specifications, as shown in Fig. 3. An array declaration
statement concerning shared data in MpC programming [11] is
converted to sms_mapalloc. It is known that MpC is a minimal
extension of C [13] and that it enables global-type array

TABLE I. COMPARISON OF UPC, XCALABLEMP, AND SMINT

mSMS
(+MpC)

Access to Anywhere
global data (shared data)
Use pointer Possible Impossible Possible Possible

Runtime load Light Light Heavy Heavy
Dedicated
Compiler

Required Required
Unnecessary

(Simple translator)
Simple

translator
Directive-based

programming
Not Available Available Not Available Available

UPC XcalableMP SMint

sleeve or
gmove

Anywhere Anywhere

Fig. 1 Programming environment on mSMS

Fig. 2 C program with SMS library functions

Fig. 3 MpC program with shared data declaration

#include <mpc.h> // C program by using MpC（shared data declaratiion）
#define N …
shared double vec1[N] ::[1](0,1) ; // Mapping to node0
shared double vec2[N] ::[1](1,1) ; // Mapping to node1
shared double array[N][N] ::[NPROCS][](0,NPROCS) ;

//Distributed mapping to all nodes
int main(int argc, char *argv[])
{ int size, st, ed; //Area of each node

mpc_init(&argc, &argv);

size=N/NPROCS;
st=size * MYPID; ed=size * (MYPID+1); //Area of each node

#pragma omp parallel for //Multithreaded parallel execution in each node
for(i=st; i<ed; i++){ // Parallel execution of for(i=0; i<N; i++) in all nodes

for(k=0; k<N; k++)
vec2[i]= array[i][k] * vec1[k]; //Matrix-vector multiplication

}
mpc_barrier();
mpc_exit();

}

declarations using shared. In scientific simulations, array
descriptions are often preferred to dynamic allocation, such as
sms_alloc or sms_mapalloc. The MpC program is converted to
an equivalent C program, as shown in Fig. 2, by the MpC
translator.

C. SMint Incremental Programming

The third API, SMint [14], is a directive-based API. As with
OpenMP or OpenACC, adding pragma SMint to the for-loop
statements in sequential programs enables conversion of these
programs to multi-node parallel programs. SMint provides
incremental programming from sequential programs in a simple
way. Moreover, data localizing instructions (copyin, copyout,
copy, create, etc.) that perform batch data transfer from or to a
remote node, before or after multi-node parallel sections can be
added. Using this specification, necessary data can be prefetched
to the local node prior to the start of the parallel section, which
boosts the performance of computation in the parallel section. It
also improves the efficiency of data consistency management
and local node cache handling at the end of parallel sections. In
a case without such data localizing specification, mSMS detects
remote data accesses at runtime and fetches the required data
from the remote node in SMS-pagesize units. Fig. 4 shows the
SMint program. Fig. 4 shows a different version of the matrix-
vector product programs shown in Figs. 2 and 3. In Fig. 4, vec2
is distributed across all nodes and remote data vec1 is prefetched
using the copyin instruction.

III. PARALLEL PROGRAMMING IN XMP AND UPC

This section outlines the two PGAS languages, XcalableMP
and UPC, which were used for comparison with SMint.

A. Overview of XcalableMP

XcalableMP (XMP) [4] is a directive-based PGAS language
for distributed memory systems, providing two programming
models; a global-view model and a local-view model. In global-
view programming, data distribution mapping and process
distribution mapping (work mapping) are specified as pragma
directives. Fig. 5 shows examples of data and work mappings in
XMP and SMint. They are similar programs but differ in
execution. In XMP, the data access in a for statement is limited
to local data, and a range of global array a[N] is allocated to the
local node by a template t[N] specification. On the other hand,
SMint has no restriction in the accessible range of a[N]. The
underlying runtime system mSMS fetches the remote node data,
if necessary, during the for loop execution.

Fig. 6 shows description examples of typical stencil
calculations for XMP and SMint. XMP, shown in Fig. 6(a), uses
shadow and reflect constructs for prefetching sleeve areas.
SMint, shown in Fig. 6(b), uses the scopy directive. Descriptions
in both XMP and SMint increase the performance of their
parallel-for execution by prefetching the data required in
advance.

Fig. 7 shows descriptions of global data copy in XMP and
SMint. In XMP, the gmove construct is necessary for global data
copy, as shown in Fig. 7(a). In this example, a[0]–a[9] in node 0
are copied to a[50]–a[59] in node 2. A data block assignment
statement is available in XMP. The decision for the gmove
construct usage depends on whether a[0]–a[9] and a[50]–a[59]
are mapped in the same node or in different nodes. In other
words, it is always necessary to know the mapped location of

Fig. 4 SMint program with a copyin directive

(a) XMP program

(b) SMint program

Fig. 5 Data mapping and work mapping in XMP and SMint

(a) XMP program with shadow & reflect directives

(b) SMint program with a scopy directive

Fig. 6 Prefetch sleeve area in XMP and SMint

…
#pragma xmp shadow a[1][0] //Declaration of sleeve area
…
int main(){

int I,j;
#pragma xmp reflect (a) //Prefetch sleeve area
#pragma xmp loop on t[i] //work mapping

for(i=0; i<NY; i++)
if(i==0 || i==NY-1) continue;
for(j=1; j<NX-1; j++)

b[i][j] = 0.4*a[i][j] + 0.15*(a[i-1][j] + a[i+1][j] + a[i][j-1] + a[i][j+1]);

return 0;
}

…
int main(){

int i;
#pragma SMint parallel for scopyin(a[1][0]) //work mapping and prefetch sleeve area

for(i=0; i<NY; i++)
if(i==0 || i==NY-1) continue;
for(j=1; j<NX-1; j++)

b[i][j]= 0.4*a[i][j] + 0.15*(a[i-1][j] + a[i+1][j] + a[i][j-1] + a[i][j+1]);

return 0;
}

global data, although the array name “a” and index “i” can be
used in the global namespace. In contrast, SMint provides
seamless global data accessing independent of the location of
global data. Therefore, SMint description is the same as that in
a regular C program, as shown in Fig. 7(b). There data location
can be ignored.

In summary, global-view programming in XMP, which
provides global data namespace and global data access, is only
available in two cases: (1) access to sleeve areas by using
shadow and reflect construct and (2) copy of global data by
using gmove construct. This limitation in XMP reduces the
variety of XMP applications in the global-view model.

On the other hand, the global view description in Fig. 7(a)
can be rewritten to the local view description in Fig. 8. The
global array a[100] is viewed as four arrays of a[25] in the XMP
local-view model shown in Fig. 8. The local-view model uses
“coarray notation”, which consists of a local array with local
indexes followed by a “:” and the node ID number. In several
PGAS languages, block data assignments using a coarray
notation are directly converted to MPI one-sided
communications.

B. Overview of Berkeley-UPC
UPC [5,10] is one of the PGAS languages for distributed

memory systems and Berkeley-UPC [7] is one of its
implementations. In UPC, parallel processing is performed
during an execution entity called THREAD, and THREADS is

the total number of THREAD(s). A UPC THREAD is not a
thread; it is closer to a process. In UPC, it is possible to declare
shared data in the global address space by adding the extended
data type shared in front of the normal data declaration
statements in C. Moreover, it is also possible to use pointers to
point to data in the global address space. The array distributed
mapping to THREADs is, by default, a single-element cyclic
distribution, as shown in the first line of Fig. 9. By inserting the
block size specification between shared and data type, as shown
in the second line of Fig. 9, a block cyclic distributed mapping
can be described.

As a result of the UPC language specification, it is
impossible to distinguish between a local node THREAD and a
remote node THREAD in UPC programs (the THREAD layout
can be determined at compile time as -pthread = “number of
THREADS per node” and at execution time by specifying the
number of compute nodes). On the other hand, SMint and XMP
provide two levels of parallel processing. Multi-node parallel
and multi-core parallel in one node can be specified
independently using an individual pragma statement, for
example, pragma SMint and pragma OMP. Threads in the same
compute node can access shared data efficiently without an
overhead between remote nodes. In UPC, even where data are
within the same node, access to the data of another THREAD
(process) is obtained as global data access using a shared pointer,
thus causing extra overhead.

Besides the existing library functions, UPC adds new syntax
to the C language. In upc_forall, one of the new syntaxes, the
fourth specification (affinity setting) is added to the for
statement in C, which specifies the address of data the process
will access. In Fig. 10, the THREAD holding b[i] executes
iteration i.

The global and local view programs in UPC are shown in
Fig. 11. Both programs describe the same 1D, three-point stencil
processing. In Fig. 11(a), processing for shared array a[400] is
described in the global view model, whereby the program itself
is very simple. However, the recommended version of
programming, for improved performance, is based on a local-
view model using local pointer pa and local index i, as shown in
Fig. 11(b). In this program, local pointer pa is set to point to the
first element of the subarray of a[400], which is mapped to the
local THREAD. Using a local pointer pa pointing local subarray
boosts the stencil calculation performance. Shared array a and
global indexing is only used for the sleeve calculations. Thus,
the main part of the program is a description of local array
pa[100] using a local index (i = 0–99), which is no longer
different from the MPI programming.

(a) XMP program

(b) SMint program

Fig. 7 Global data copy in XMP and SMint
global-view model

#pragma xmp nodes p[*]
#pragma xmp template t[100]
#pragma xmp distribute t[block] onto p
int a[100];
#pragma xmp align a[i] with t[i]
…
#pragma xmp gmove

a[50:10] = a[0:10];

#pragma SMint shared ::[NPROCS] (0,NPROCS)
int a[100];
…
for(i=0; i<10; i++)

a[50+i] = a[i];

a[100]

node 0 node 1 node 2 node 3node 0 can access
this area (in XMP)

gmove

100

any node can access
any area (in SMint)

Fig. 8 Data copy using Coarray description
in XMP local-view model

int rank = xmpc_this_image();
int a[25]:[*];

if(rank==0)
a[0:10]:[2] = a[0:10];

Coarray description
a[index]:[node num]

Fig. 9 Declaration of global data in UPC

Fig. 10 A upc_forall statement in UPC

shared double a[100]; //1 element cyclic
shared [100/THREADS] double b[100]; //block size is 100/THREADS

//The process holding b[i] executes the iteration
upc_forall(i=0; i<100; i++; &b[i]){

b[i]=…
}

IV. THE PROGRAMMABILITY COMPARISON

A stencil calculation, one of the most typical and important
calculation kernels in scientific computations, was used for the
comparison in this study, because it is one of the few
applications that can be implemented with the XMP global view
model.

A. Data size limitations in UPC
In UPC, there is an upper limit on the block size of

distributed mapping in the shared array declaration displayed in
Fig. 9. The internal expression of the UPC shared pointer
consists of three fields: block element size, number of
THREADs, and memory address space per THREAD. The
maximum available block size in the current version of UPC
struct-based pointer [7] is only 31 bits = 2G elements. This
means that the available mapped data size per THREAD is
limited. Considering this limitation, two 2D data arrays with
65,536 × 65,536 elements were used for strong scaling
performance measurements on multiple nodes larger than four
nodes. Hence, the simplest five-point stencil calculation for
comparatively small-size 2D arrays (64 GiB in total) was
employed in this study.

B. SMint, XMP, and UPC programs in Global View Model
The 2D five-point stencil calculation was implemented in

three languages and the programmability among them was
compared. Figs. 12, 13, and 14 show the skeleton code of the
stencil calculations implemented in each of the SMint, XMP,
and UPC. Upon comparing SMint and XMP, we see that XMP
requires more pragma directive statements than SMint. The
UPC program in Fig. 14 (global pointer version) is based on
global-view programming, which provides simple description
and is easy to read. In contrast to the UPC program, SMint and

XMP programs introduce two-level parallelism by adding an
OpenMP pragma for multi-core parallelism in addition to multi-
node parallelism.

Fig. 12 A 2D five-point Stencil skeleton in SMint

Fig. 13 A 2D five-point Stencil skeleton in XMP

(a) Global view model in UPC

(b) Local view model in UPC

C. UPC Programs in Local View Model

To improve the performance of UPC programs, use of local
view descriptions is recommended. In this section, two UPC
programs using local view model are introduced alongside the
global pointer version, as shown in Fig. 17. The performance of
both the programs was evaluated through a comparison with the
global-view program. The first one (local pointer version),
shown in Fig. 15, uses a local pointer pa for the majority of the
stencil calculations. The local pointer pa points to the first
element of the range of the shared array a[], mapped in the local
node. The global pointer description using array a is used only
for accessing the sleeve area in the upper and lower adjacent
nodes, which are added separately beside the descriptions of
calculation using pa.

The second program (upc_alloc version) is shown in Fig. 16.
This program was developed with reference to the UPC
programs in Parallel Research Kernel [15]. It uses a upc_alloc
function instead of shared array declaration statements, to avoid
the block size limitation in the shared data statements, as
described previously. Array a[NY][NX] is split into subarrays,
a[LY][NX], managed by each node (where
LY=NY/THREADS), and allocated separately using upc_alloc.
The program uses an array of the shared pointer pointing to a
shared array, that is, a[MYTHREAD], and a local pointer
pointing shared data array, pa. The program uses the local
pointer pa when accessing the local data in local THREAD, and
it uses the shared pointer a when accessing remote data in other
THREADS.

The local-view programs, shown in Figs. 15 and 16, are
more complex compared to the global-view program, shown in
Fig. 14. Many complicated pointer definitions and usages,
shown in Fig. 16, hinder program readability and degrade
program development productivity. It is difficult to determine
conclusively whether local-view UPC programs provide a more
efficient programming environment in comparison to the one
MPI programs provide.

Fig. 15 A 2D five-point Stencil skeleton in UPC (local pointer
version.)

Fig. 16 A 2D five-point Stencil skeleton in UPC (upc_alloc version.)

#include …
#include <upc_relaxed.h>
…
#define LY NY/THREADS //local size of Y
shared [LY * NX] double a[NY][NX];
shared [LY * NX] double b[NY][NX];

int main(int argc, char **argv){
int x,y,t;

//local pointer
double (*pa)[NX] = (double (*)[NX]) &a[LY * MYTHREAD][0];
double (*pb)[NX] = (double (*)[NX]) &b[LY * MYTHREAD][0];

//Array Initialize
…

for(t=0; t<NT; t++){ //time step
if(t%2==0){ //phase 1 : b=a
if(MYTHREAD > 0){ //upper sleeve
y=0;
for(x=1; x<NX-1; x++){

pb[y][x] = 0.4*pa[y][x] + 0.15*(a[LY*MYTHREAD-1][x] + pa[1][x] + pa[y][x-1] + pa[y][x+1]);
}

}
for(y=1; y<LY-1; y++;){
for(x=1; x<NX-1; x++){

pb[y][x] = 0.4*pa[y][x] + 0.15*(pa[y-1][x] + pa[y+1][x] + pa[y][x-1] + pa[y][x+1]);
}

}
if(MYTHREAD < THREADS-1){ //lower sleeve
y=LY-1;
for(x=1; x<NX-1; x++){

pb[y][x] = 0.4*pa[y][x] + 0.15*(pa[y-1][x] + a[(MYTHREAD+1)*LY][x] + pa[y][x-1] + pa[y][x+1]);
}

}
else{ //phase2 : a=b
…
}
upc_barrier;

}// time step end

return 0;
}

THREAD 0

THREAD 1

...

THREAD THREADS-1

NX

NY

LY

NX
LY

private

shared
LY

NX NX
LY

THREAD0 THREAD1 …

…

THREAD THREADS-1

pa pb pa pb pa pb pa pb

#include …
#include <upc_relaxed.h>
…
#define LY NY/THREADS

//local pointer to shared block
typedef shared [] double * local_shared_block;
typedef shared [] local_shared_block *local_shared_block_ptrs;

//pointer array for global access
shared [1] local_shared_block_ptrs a[THREADS];
shared [1] local_shared_block_ptrs b[THREADS];

int main(int argc, char **argv){
int x,y,t;

local_shared_block_ptrs pa = upc_alloc(sizeof(local_shared_block) * LY);
local_shared_block_ptrs pb = upc_alloc(sizeof(local_shared_block) * LY);

local_shared_block tmp_a = upc_alloc(sizeof(double) * LY * NX);
local_shared_block tmp_b = upc_alloc(sizeof(double) * LY * NX);

for(y=0; y<LY; y++){ // align
pa[y] = tmp_a + (y * NX);
pb[y] = tmp_b + (y * NX);

}

//set local pointer to shared pointer array
a[MYTHREAD] = pa;
b[MYTHREAD] = pb;

//Array Initialize
…
for(t=0; t<NT; t++){ //time step

if(t%2==0){ //phase 1 : b=a
if(MYTHREAD > 0){ //upper sleeve
y=0;
for(x=1; x<NX-1; x++){

pb[y][x] = 0.4*pa[y][x] + 0.15*(a[MYTHREAD][LY-1][x] + pa[1][x] + pa[y][x-1] + pa[y][x+1]);
}

}
for(y=1; y<LY-1; y++;){
for(x=1; x<NX-1; x++){

pb[y][x] = 0.4*pa[y][x] + 0.15*(pa[y-1][x] + pa[y+1][x] + pa[y][x-1] + pa[y][x+1]);
}

}
if(MYTHREAD < THREADS-1){ //lower sleeve
y=LY-1;
for(x=1; x<NX-1; x++){

pb[y][x] = 0.4*pa[y][x] + 0.15*(pa[y-1][x] + a[MYTHREAD+1][0][x] + pa[y][x-1] + pa[y][x+1]);
}

}
else{ //phase2 : a=b
…
}

upc_barrier;
}// time step end

return 0;
}

a[] b[]

NX
LY

private

shared
THREAD THREADS-1THREAD0 …THREAD1

pa pb pa pbpa pb pa pb

a[0] b[0] a[...] b[...]a[1] b[1]
THREADS-1

Fig. 14 A 2D five-point Stencil skeleton in UPC (global pointer
version)

V. THE PERFORMANCE COMPARISON

A. Experimental Environment
 In this experiment, Omni XMP Compiler version 1.3.2 and

Berkeley–UPC Compiler version 2.28.0 were used for XMP and
UPC, individually. SMint and XMP used MPI, and UPC used
GASNet’s [8] MPI_conduit as the method of communication
between nodes. The Tsubame 3.0 supercomputer, shown in
Table 2, was used for performance measurements.

B. Local and Global View Descriptions in UPC Programs
The performance of the three UPC descriptions, i.e., the

upc_alloc version shown in Fig. 16, the global pointer version
shown in Fig. 14, and the local pointer version shown in Fig 15,
were investigated. Fig. 17 shows the execution times of the five-
point stencil calculation (10 step iterations) carried out for a 2D
array (64K × 64K elements, double) while using two computer
nodes and 4–64 UPC THREADS in total. The execution time of
the upc_alloc version was longer than those of the other two
versions. While using four THREADS, the execution of the
local pointer version was 13.1 times faster than that of the
upc_alloc version, and 5.5 times faster than that of the global
view version. The performance of all the versions of the UPC
programs was accelerated by increasing the number of
THREADS from 4 to 64.

C. Performance on a Various Number of Nodes and Threads
Fig. 18(a), (b), and (c) show the performance profiles of UPC,

XMP, and SMint programs, respectively, while using various
combinations of the number of nodes (2–16) and the number of
threads per node (1–32).

 Fig. 18(a) shows the execution times of the UPC local
pointer version (which was depicted in Fig. 15). The best
execution time was observed to be 10.7 s, achieved while using
2 nodes and 32 threads/node. In the case of the UPC local pointer
version, the performance generally improved while using a
small number of nodes and a large number of threads per node.
On the other hand, the performance of UPC global pointer
version improved while using a higher number of nodes and
threads per node. Upon using more than two nodes, the
performance of the global pointer version exceeded that of the
local pointer version.

In Fig. 18(b), the best execution time recorded for XMP was
1.6 s when using 16 nodes and 8 threads per nodes. The XMP
performance generally declined upon increasing the number of
threads per node. In the case of the XMP, 8 or 16 were the
optimal numbers of threads per node.

Fig. 18(c), shows the best execution time recorded in the
case of SMint, i.e., 1.5 s while using 16 nodes and 32 threads per
node. By increasing the number of nodes and threads per node,

(a) UPC (local pointer version)

(b) XMP

(c) SMint

Fig. 18 Execution times in three languages

(2-16 nodes 1-32 threads/node)

TABLE II. ENVIRONMENT ON TSUBAME3.0

CPU Intel Xeon CPU E5-2680 v4 @ 2.40GHz * 2CPU
Num of Core / Threads 14 Core / 28 Threads
Memory 256GiB
Network Intel Omni-Path HFI 100Gbps *4
OS SUSE Linux Enterprise Server 12 SP2
Compiler gcc 4.8.5
MPI intel-mpi/18.1.163

Fig. 17 Execution times on three implementation methods of UPC

the SMint program achieved a shorter execution time, which
was a different tendency noticed when considering the other two
programs (XMP and UPC local pointer versions).

D. Comparison of the Performance of the Three Languages
 Fig. 19 shows a graph depicting the best execution times for

each program upon using the specified number of nodes. In the
cases where more than two nodes were used, the UPC execution
times were 2.7–10.3 times slower than those of XMP and SMint.
In contrast, upon comparing the results for SMint and XMP, the
execution times obtained for SMint were 6–30% faster than
those of XMP for any number of nodes.

VI. CONCLUSION

In this study, the programmability and performance of
global-view programming in SMint, XcalableMP, and UPC
have been investigated using stencil computation. They are
typical PGAS languages based on the C language and are
available for multi-node and multi-core computations.

The global-view programming in XMP is only available in
two cases: (1) access to sleeve areas using the shadow and reflect
constructs and (2) copy of global data using the gmove construct.
This limitation makes it difficult to use XMP for various
applications. It is for this reason that stencil computation was
employed for the global-view programming comparison in the
study. The XMP performance in the stencil computation was
approximately the same as the SMint performance.

In UPC, the global view program that utilizes shared data
declaration statements is simple and supports high readability
but performs poorly compared to XMP and SMint. Moreover,
UPC global-view programs cannot be used for large-scale
calculations since the global data array declaration cannot be
used for large-scale data mapping when using several nodes.
There is no alternative other than to employ the UPC local view
programs using upc_alloc, local pointers, local arrays, and local
array indexes. The UPC local-view descriptions usually have
low readability and productivity because of the complicated
pointer manipulations needed to access the local and shared data,
as shown in Fig. 16.

In conclusion, there are several difficulties in programming
in XMP and UPC when using a global-view model that supports

a genuine global address space. Moreover, it was found that
there were limitations on applicable computations and the global
data sizes that can be handled successfully.

SMint can access both global and local data seamlessly by
using ordinary C pointers, and there are no restrictions on
accessible global data areas. This is due to the underlying mSMS
providing flexible remote data access capability at runtime. In
mSMS, processes share a large virtual address space—that
exceeds the size of the local physical memory run on each
calculation node—and are executed in parallel. On the other
hand, several PGAS languages usually employ static analysis
and optimization by their compiler and a direct translation from
the remote data access to MPI get/put communications. SMint
on mSMS has a more dynamic mechanism and thus, it can be
used for various applications.

ACKNOWLEDGMENT

This work was supported by the Joint Usage/Research
Center for Interdisciplinary Large-scale Information
Infrastructures and High Performance Computing Infrastructure
in Japan (Project ID: jh190039-ISH) and JSPS KAKENHI
(Grant Number JP18K11327).

REFERENCES
[1] OpenMP, https://www.openmp.org/ online 2019/7/22

[2] OpenACC, https://www.openacc.org/specification online 2019/7/22

[3] M. D. Wael, S. Marr, B. D. Fraine, T. V. Cutsem, and W. G. Meuter,
“Partitioned global address space languages,” ACM Comput. Surv.
(CSUR), vol. 47, July 2015.

[4] XcalableMP, http://www.xcalablemp.org/ja/ online 2019/7/22

[5] UPC Consortium, UPC Language Specifications Version 1.3,
https://upc.lbl.gov/docs/user/upc-lang-spec-1.3.pdf

[6] R. Numwich and J. Reid, “Co-Array Fortran for parallel programming,”
Technical report ral-tr-1998-060, Rutherford Appleton Laboratory,
August 1998.

[7] Berkeley UPC, http://upc.lbl.gov/, ver.2.28.9 online 2019/7/22

[8] GASNet, https://gasnet.lbl.gov/ online 2019/7/22

[9] Tsubame3, http://www.gsic.titech.ac.jp/tsubame3 online 20197/22

[10] T. E. Ghazawi, W. Carlson, T. Sterling, and K. Yelick, “UPC distributed
shared memory programming,” WILEY, 2005, ISBN-10-471-22048-5

[11] H. Midorikawa, U. Ohashi, and H. Iizuka, “The design and
implementation of user-level software distributed shared memory system:
SMS - implicit binding entry consistency model,” IEEE Pacific Rim
Conference on Communications Computers and Signal Processing, pp.
299–302, 2001-08. (doi: 10.1109/PACRIM.2001.953582)

[12] H. Midorikawa, “Stencil computations using software distributed shared
memory mSMS on large-scale multicore nodes,” IPSJ SIG Technical
Reports, vol. 2018-HPC-165, pp. 1–9, 2018.7.

[13] H. Midorikawa, “The performance analysis of portable parallel
programming interface MpC for SDSM and pthread,” IEEE/ACM
International Symposium on Cluster Computing and the Grid
(CCGrid2005, IEEE/ACM CCGrid), vol. 2, pp. 889–896, 2005.5 (doi:
10.1109/CCGRID.2005.155865)

[14] Y. Sakaguchi, K. Nishiya, and H. Midorikawa, “SMint: directive-based
API for translating sequential programs to multi-node multi-core
programs,” IPSJ SIG Technical Reports, vol. 2018-HPC-167, pp. 1–9,
2018.12.

[15] Parallel Research Kernel github https://github.com/jeffhammond/PRK
online 2019/7/22

Fig. 19 Execution times with optimal number of threads

in three languages

