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Abstract 
 
Prevailing 64bit-OS enables us to use a large memory 
address space in computer programming general. 
However, the actual physical memory becomes the 
limitation in utilizing it fully. When a program requires 
more memory than available physical memory in a 
computer, a traditional virtual memory system 
performs the page swap between a local hard disk and 
physical memory. Here, with the recent development in 
high-speed network, remote-memory access via 
networks becomes faster than accessing a local hard 
disk. We built the Distributed Large Memory System 
(DLM) to access vast remote memories in networks. 
The DLM is designed as a user-level software for high 
portability. The DLM provides a very large virtual 
memory using remote memories distributed over 
cluster nodes. This paper proposes a newly designed C 
compiler for the DLM. It provides an easy 
programming interface to use the abundant memory of 
the DLM with existing sequential programs, instead of 
developing parallel programs. 
 
1. Introduction 
 

In recent years, we can use a large memory address 
space from the programs running on 64bit-OS. 
However, the physical memory of a computer becomes 
a limitation for such memory use. Ordinary, when a 
program requires more memory than physical memory 
in a computer, memory pages are swapped in/out a 
hard disk. However, accessing remote memories in 
network-connected computers becomes faster than 
accessing local hard disks, because of the recent 
development of high-speed networks. 

Researchers who simulate a scientific numerical 
problem usually develop a sequential program first and 
validate it with small scale problems. Then, they 
simulate large scale problems. To deal with large scale 
problems, the programs sometime require more 
memory than a local memory in one computer. In such 
cases, the sequential programs have to be converted to 
parallel programs that utilize large memories on 

multiple nodes in a cluster. However, developing a 
parallel version of the programs is not an easy task for 
people who are not familiar with parallel programming. 
Moreover, it will impose them to pay extra costs for 
debugging and validating a parallel version of 
programs. Additionally, not all sequential program 
models can be converted to parallel ones because of 
the nature of original simulation models. In these cases, 
some users prefer to run existing sequential programs 
using large memory distributed over cluster nodes, 
even if the execution time becomes slower than the 
time of a parallel version of the programs.  

Because of these reasons, the Distributed Large 
Memory (DLM) System [1], which was a virtual large 
memory system distributed over cluster nodes, was 
developed. The DLM system is designed for sequential 
programs that need a large amount of data beyond the 
local physical memory. It was reported that the DLM 
system using remote memory achieved higher 
performance of program executions compared to the 
kernel swap system with a local hard disk. In this 
paper, we propose a DLM compiler, which enables us 
to use rich memory distributed over multiple nodes of 
a cluster with existing sequential programs. It also 
eliminates the extra cost for developing parallel 
programs. 

To use remote memory for a sequential program, 
there are two ways: kernel-level implementations and 
user-level implementations. 

Kernel-level implementations have limited 
portability because they ordinary require a special 
hardware and/or kernel modifications. Kernel-level 
implementations usually replace a traditional swap 
device, a hard disk, with remote memory. It was 
reported that changing a swap device to remote 
memory often caused performance degradation in page 
swapping [1]. One of the reasons is that the swap 
system of a traditional OS is usually tuned to a hard 
disk. Another reason is unstable behavior in remote 
communication under the lack of memory when a 
swap daemon is initiated. However, kernel 
implementation gives complete transparency to a user. 



It means there is no need to change programs for using 
a remote memory. 

User-level implementations are designed 
independent from OS kernel and swap daemon, and 
run as a user-level program. They have high portability, 
but it imposes users to suit their programs to the APIs 
provided by the implementations. User-level 
implementations generally achieve a high 
communication performance than kernel-level 
implementations, because they are executed without 
initiating swap daemon. 

The JumboMem [2], the one of the user-level 
implementations, improved user transparency. It was 
achieved by providing a dynamic linkable shared 
object library and replacing memory-related functions, 
such as malloc, with newly implemented JumboMem 
functions, which utilize remote memory in the 
JumboMem address space. It realizes perfect user 
transparency. There is neither need to modify user 
programs, nor to recompile existing binary programs. 
However, there are two problems. First is that 
JumboMem only supports dynamic memory allocation 
functions, and it does not support static array 
declarations, which are commonly used in many 
numerical programs. The second problem is that all 
malloc functions are replaced with JumboMem 
functions which use remote memories. It sometimes 
causes significant problems, e.g. I/O buffer memory 
for file access might be allocated in remote memory, 
which must be always allocated in local memory. 

The DLM system is a user-level software to achieve 
high portability and performance. It resolves two 
problems occurred in JumboMem. First, the DLM 
provides the API that can support both dynamic 
memory allocation and static array data. The second, 
users can distinguish two types of data, data allocated 
in both remote memory and local memory and data 
always exist in local memory. To improve low user 
transparency in user-level implementation, the DLM 
compiler is proposed. 

 
 
2. The DLM System 
 
2.1. The DLM System Overview 
 

Fig.1 shows an overview of DLM system. The 
DLM system runs a sequential user program at Cal 
Host node. The DLM system automatically allocates 
data in remote memory of Mem Server node, when a 
user program needs more memory than the size of a 
local memory. When the user program accesses certain 
data in remote memory, the DLM system swaps in the 

page which contains the data to Cal Host node, and 
swaps out the other pages to Mem Server node. The 
unit of swapping is DLM page size that is a multiple of 
the OS page size. General protocol, TCP/IP or MPI, is 
used in the DLM system. So it can run on a wide 
variety of high-speed communication media like 
10Gbps Ethernet, Infiniband, and Myri10G. It looks 
like a sequential program execution for users, but 
actually it runs as a user-level parallel program using 
distributed memory over a cluster. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Example of the DLM system 
 

2.2. Program Interface of the DLM System 
 
The proposed interface is designed to alleviate a 

user’s load of rewriting programs. The knowledge of 
parallel programming is unnecessary to use the DLM 
system. 

As previously mentioned, the DLM supports two 
types of memory allocations, both a static array 
declaration and a dynamic memory allocation for 
remote memory. Users can specify large data, called 
DLM data, which are allocated not only in local 
memory but also in remote memory when the amount 
of local memory is not sufficient for the data. 

Generally in C programs, global variables and static 
variables are allocated in static data area, local 
variables are allocated in stack memory area, and  
dynamically allocated data by malloc function are 
allocated in heap memory area. However, in the DLM 
system, the DLM data are always allocated in heap 
memory area of local/remote memory irrespective of a 
global static array or a local variable. This enables us 
to use a large amount of data, not limited by local 
memory size or a compiler. 

The DLM programs are identical to ordinary C 
programs, except attaching dlm before the DLM data 
declarations. The dlm is introduced as one of the 
storage specifiers in C grammar, like extern and static. 
DLM’s API has 2 features as follows: 

Cal Process

Cal Host node

Mem Server node 

MemServer 
Process 

Mem Server node 

MemServer 
Process 

Mem Server node 

MemServer 
Process 



- A user can distinguish the DLM data from 
ordinary data using dlm specifier. The first line 
in Fig.2 represents an ordinary data declaration, 
which allocates data in local memory only. The 
second line represents the DLM data 
declaration, which allocates data in a local 
memory and/or a remote memory on memory 
servers. 

- A user can specify 2 types of the DLM data. 
The first line in Fig.3 represents a static array 
declaration of the DLM data. The second line 
represents a dynamic memory allocation of the 
DLM data. 

 
 
 
 
 

Fig. 2   Ordinary data and the DLM data declarations 
 
 
 
 
 
 
Fig. 3   Static and dynamic DLM data allocation 
 
Fig.4 shows a DLM sample program, which 

calculates median values of multiple array data. The 
array a(①) at the beginning of the program includes 
10 integer arrays, which has 10G elements in each 
array. The main function randomly assigns integer 
numbers to the array a. In the median function, local 
array variable b(②) is created, and one of the integer 
array of a is copied to b. Then, qsort function sorts the 
array b and the median function returns the median of 
the array b. The essence of the program is preserving 
the original order of the array a by copying one of the 
array a to the array b at every time when median is 
called. 
 The size of local array variable b at ② in Fig.4 is 
40GB. In an ordinary C program, it is allocated in a 
stack memory, so the program execution is usually 
restricted by the size of local memory and the size of 
stack memory area. On the other hand, the DLM data 
are always allocated to heap memory area in local 
memory and/or remote memory, even if they are 
declared as local variables in programs. So the 
program using large data specified as the DLM data is 
hardly limited in an actual execution by the available 
local memory size or a kernel memory layout.  
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4   A sample of  the DLM program  
 

3. Structure of the DLM Compiler 
 

The DLM compiler is designed to have 2 parts for 
high portability. The first part includes a general C 
preprocessor and a DLM translator, dlmpp. The second 
part is a general C compiler.  

Fig.5 shows procedures in the DLM compiler. First, 
the DLM compiler converts a DLM program including 
dlm specifiers to an ordinary C program by dlmpp 
translator. It performs 3 tasks: (1) insert DLM library 
functions, (2) transform the DLM data declarations to 
ordinary C pointers, and (3) rename the variables 
accessing to the DLM data by considering their scopes. 
   The next, the DLM compiler creates an execution 
program from the C program by a gcc compiler with 
the dlm library. Fig.6 shows an example of compile 
command, dlmc, which makes an execution program 
(prg1) from a DLM program (prg.c) with dlm library. 

int a[100][10] ; →allocate in a local memory only 
dlm int b[1000][1000] ; → allocates in local 

memory and/or  
remote memory

dlm double c[1000][1000] ;  
   →static array declaration 
c =(double(*))dlm_alloc(1000*1000*sizeof(double));
         →dynamic memory allocation 

#include <stdio.h> 

#include <stdlib.h> 

#include <dlmm.h> 

#define NUM 10 

#define LENGTH (10*(1L << 30)) // 10GB 

dlm int a[NUM][LENGTH]; // 400GB ① 

 

int median(long int num) { 

    dlm  int b[LENGTH]; // 40GB ② 

    long int j, ans; 

    for ( j = 0; j < LENGTH; j++)  

        ③  b[j] = a[num][j]; ④ 

    qsort(b,LENGTH,sizeof(int),compare_int); ⑤ 

    ans = b[LENGTH/2]; ⑥ 

    return ans; 

} 

 

int main ( int argc, char *argv[]) 

{ 

    long int i, j; 

    for ( i = 0; i < NUM; i++) 

        for ( j = 0; j < LENGTH; j++)  

    ⑦ a[i][j] = rand(); 

    for ( i = 0; i < NUM; i++) 

        printf("median[%d] = %d\n", i, median(i)); 

    return 0; 

} 



The DLM system is also available by manually 
rewriting programs using dlm functions and executing 
them with an ordinary C compiler. However, the DLM 
compiler gives a great benefit for users by saving the 
time bothering to rewrite the programs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.5  Components of DLM compiler 

 
 

 
Fig. 6   A DLM compile command example 

 
The dlmpp translator translates Fig.4 to Fig.7 

(header files introduced by C preprocessor are omitted). 
Following procedures are performed when translating 
DLM programs to C language programs by the DLM 
compiler. 

- Insert the dlm_startup function after variable 
declarations of the main function. The 
dlm_startup activates the DLM system. It 
creates memory server processes at memory 
server nodes and setups communication 
between memory server processes and a 
calculation process. (See Fig.7 - ⑨) 

- Insert the dlm_shutdown function before all 
return statements in the main function. The 
dlm_shutdown terminates the DLM system. It 
finishes the communication with memory 
servers and shut down memory server 
processes. (See Fig.7 - ⑫,⑬) 

- Change DLM array data declarations to pointer 
base declarations. (See Fig.4 - ①,② → Fig.7 - 
①,②). Insert dlm_alloc functions of the DLM 
data after the dlm_startup function(See Fig.7 –
③,⑩). Rename all of the DLM data variables 
to _dlm_variable name_block number (See 

Fig.4 - ③,④,⑤,⑥,⑦ → Fig.7 - ④,⑤,⑥,⑦,
⑪). 

- Insert dlm_free function at the last parts of all 
blocks and functions, if dlm variables are 
declared in the blocks and/or functions. (See 
Fig.7 - ⑧) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7  A C program converted by dlmpp translator 
 
 
 

 

DLM Program 

dlmpp Translator 

C Language Program 

gcc Compiler 

Execution Program 

DLM 
Library 

link 

C preprocessing 

・ Insert DLM Library 
functions 

・Change DLM array data 
to pointer access 

・Renaming DLM data 
with data scope check 

dlmc   prg.c   –o   prg1   -ldlm 

     ・・・・・・・・・・・・・ 

int (*__dlm_a_0)[(10*(1L<<30))]; ① 

 

int median(long int num) { 

  int (*__dlm_b_1); ② 

  long int j, ans; 

 __dlm_b_1 = ( int (*))dlm_alloc((10*(1L<<30))*sizeof( int )); ③ 

 for ( j = 0; j < (10*(1L << 30)); j++)  

           ④__dlm_b_1[j] = __dlm_a_0[num][j]; ⑤ 

 qsort(__dlm_b_1,(10*(1L << 30)),sizeof(int),compare_int); ⑥ 

    ans = __dlm_b_1[(10*(1L << 30))/2]; ⑦ 

    dlm_free(__dlm_b_1); ⑧ 

    return ans; 

} 

int main ( int argc, char *argv[]) 

{ 

    long int i, j; 

    dlm_startup(&argc, &argv); ⑨ 

__dlm_a_0 = ⑩ 

( int(*)[(10*(1L<<30))])dlm_alloc(10*(10*(1L<<30))*sizeof( int ));

    for ( i = 0; i < 10; i++) 

       for ( j = 0; j < (10*(1L << 30)); j++)  

 ⑪__dlm_a_0[i][j] = rand(); 

    for ( i = 0; i < 10; i++) 

 printf("median[%d] = %d\n", i, median(i)); 

        dlm_shutdown(); ⑫ 

        return 0; 

        dlm_shutdown(); ⑬ 

} 



4.  DLM programs for DLM System 
 

In this section, we show some examples of 
rewriting actual programs for the DLM system. 
Basically, what users have to do for converting 
existing sequential programs to DLM programs is only 
2 or 3 things: (1) inserting dlm.h at the top of the 
program, (2) attaching dlm before large data 
declarations,  and (3) replacing malloc with dlm_alloc.  

Fig. 8 shows all modified parts for Himeno 
Benchmark [3]. In the original program, large data are 
declared as global static variables. Since the source file 
is only one, static is unnecessary. Here only 4 
modifications are required (Fig.8).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8 Modification of Himeno Benchmark 

 
Fig.9 shows the case of STREAM Benchmark [4], 

where only one modification is required. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 Modification of STREM Benchmark 
 
Fig.10 shows the modified parts of IS in the NAS 

Parallel Benchmark [5]. In the IS, the first 3 arrays are 

declared as DLM data, while the last one is declared as 
normal because its size is very small. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 Modification of NPB IS.B 
 

In numerical simulations, static array declarations 
are often used for large data. Without the DLM 
compiler, users have to translate original static 
declarations of data arrays into dynamic data 
allocations (dlm_alloc) and convert all the original 
data-array accesses into pointer-based accesses. The 
DLM compiler reduces the rewriting costs of programs 
by users to its minimum. Only attaching dlm to the 
existing sequential programs is sufficient for using a 
remote memory for large data.  
 
 
5.  The DLM performance  
    
   This section shows one of benchmark performances 
using the DLM system. The experiments are conducted 
on a public open cluster of the T2K Open 
Supercomputer HA8000 cluster with the MPI batch 
queuing system [6] (Table 1).  
 

Table 1 Environment of Experiment 
 
 
 
 
 
 
 
 
 
 
 
 

T2K Open Supercomputer, HA8000

Machine HITACHI HA8000-tc/RS425

CPU
AMD QuadCore Opteron 8356(2.3GHz)

4CPU/ node

Memory 32GB/node (936 nodes),　128GB/node (16nodes)

Cache L2 : 2MB/CPU (512KB/Core),　L3 : 2MB/CPU

Network
Myrinet-10G x 4, (40Gbps)　bonding4
Myrinet-10G x 2, (20Gbps)　bonding2

OS Linux kernel 2.6.18-53.1.19.el5  x86_64

Compiler
gcc version 4.1.2 20070626,　Hitachi Optimizing C

mpicc for 1.2.7

MPI Lib MPICH-MX (MPI 1.2)

Original Version 
static float   p[MIMAX][MJMAX][MKMAX]; 
static float   a[4][MIMAX][MJMAX][MKMAX], 

b[3][MIMAX][MJMAX][MKMAX], 
c[3][MIMAX][MJMAX][MKMAX]; 

static float   bnd[MIMAX][MJMAX][MKMAX]; 
static float   wrk1[MIMAX][MJMAX][MKMAX],  

wrk2[MIMAX][MJMAX][MKMAX]; 
 
 

DLM Version 
dlm float  p[MIMAX][MJMAX][MKMAX]; 
dlm float  a[4][MIMAX][MJMAX][MKMAX], 

b[3][MIMAX][MJMAX][MKMAX], 
c[3][MIMAX][MJMAX][MKMAX]; 

dlm float  bnd[MIMAX][MJMAX][MKMAX]; 
dlm float  wrk1[MIMAX][MJMAX][MKMAX],  

wrk2[MIMAX][MJMAX][MKMAX]; 
 

Original Version 
static double   a[N+OFFSET], 

b[N+OFFSET], 
c[N+OFFSET]; 
 

 
 

DLM Version  
dlm double     a[N+OFFSET], 

b[N+OFFSET], 
c[N+OFFSET]; 

Original Version  
INT_TYPE key_array[SIZE_OF_BUFFERS], 
             key_buff1[SIZE_OF_BUFFERS], 
                    key_buff2[SIZE_OF_BUFFERS], 

partial_verify_vals[TEST_ARRAY_SIZE];
 
 
 
DLM Version  
dlm INT_TYPE key_array[SIZE_OF_BUFFERS], 

   key_buff1[SIZE_OF_BUFFERS], 
key_buff2[SIZE_OF_BUFFERS]; 

INT_TYPE partial_verify_vals[TEST_ARRAY_SIZE]; 



   The benchmark used here is Himeno Benchmark [3], 
which measures the speed of major loops for solving 
Poisson’s equation. It uses multiple loops of iterations 
and is known as a heavy memory access program.  
   Fig. 11 shows the performance of the Himeno 
Benchmark of ELARGE size, 513x513x1025 float 
array (15GiB). The benchmark outputs the 
performance in MFLOPS, but the values here are 
translated into the relative execution time.  
  The horizontal axis of Fig. 11 represents the ratio of 
local data size/total data size (local memory ratio L) 
used in the benchmark program. Note that (1-L)% of 
the total data resides in remote memory, while the 
remaining L% in local memory. The performance with 
the DLM system is measured by limiting the size of 
available local memory in Cal Process node. The 
vertical axis of Fig.11 represents a relative execution 
time in the DLM system compared with an ordinary 
execution time without the DLM. In an ordinary 
execution, a program uses only local memory, where 
the local memory ratio is 100%. The performance of 
ELARGE in an ordinary execution is 415 MFLOPS.     

Fig.11 shows the case of using 1MB DLM page size 
for bonding=4 (40Gbps) network. According to Fig. 
11, even if the local memory ratio becomes 6.9%, 
which means 93.1% of the total data resides in remote 
memory, the benchmark execution time becomes 2.3 
times longer than the ordinary execution time.  

We also evaluate the newly created larger data 
version of the Himeno Benchmark with XLARGE, 
1025x1025x2049 float array (112GiB). 6 nodes and 
40Gbps network is used in this experiment, where  
20GiB local memory in each node is used for 
execution. In this benchmark, a normal execution 
using only local memory is impossible because 
physical memory size in one node is limited 32GiB. 
Here the absolute performance is 179.4 MFLOPS, 
where the local memory ratio is 17.4%.  
  Moreover, a larger data size version, XLARGE-d 
with 1025x1025x2049 double array (2 25GiB) is 
created for evaluation. This experiment uses 12 nodes. 
The size of local memory for each node and network 
bandwidth used here are the same as the previous 
experiment. The absolute performance becomes 88.8 
MFLOPS, where the local memory ratio is 8.1%.  
 These experiments show that existing sequential 
programs can be used for large-scale problems beyond 
the limitation of local physical memory size. 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.11 Performance of DLM with Himeno Benchmark 
 
 
6. Conclusion 
 

The DLM system makes easy to use remote 
memories in a cluster without parallel programming. In 
the previous DLM system, users had to rewrite 
existing programs by inserting dlm functions, such as 
dlm_startup, dlm_alloc and dlm_shutdown, and 
modifying array data to pointer-based data. The 
proposed DLM compiler relieves users from these 
annoying program rewrites. With this compiler, users 
are only required to attach dlm before the DLM data.  

The proposed compiler will make people to process 
large data easily by accessing a cluster with sequential 
programs, and it will save time for rewriting a 
sequential program considerably. 
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