
A C compiler for Large Data Sequential Processing using Remote Memory

Shiyo Yoshimura, Hiroko Midorikawa
Graduate School of Science and Technology, Seikei University, Tokyo, Japan

E-mail:dm106231@cc.seikei.ac.jp, midori@st.seikei.ac.jp

Abstract

Prevailing 64bit-OS enables us to use a large memory
address space in computer programming general.
However, the actual physical memory becomes the
limitation in utilizing it fully. When a program requires
more memory than available physical memory in a
computer, a traditional virtual memory system
performs the page swap between a local hard disk and
physical memory. Here, with the recent development in
high-speed network, remote-memory access via
networks becomes faster than accessing a local hard
disk. We built the Distributed Large Memory System
(DLM) to access vast remote memories in networks.
The DLM is designed as a user-level software for high
portability. The DLM provides a very large virtual
memory using remote memories distributed over
cluster nodes. This paper proposes a newly designed C
compiler for the DLM. It provides an easy
programming interface to use the abundant memory of
the DLM with existing sequential programs, instead of
developing parallel programs.

1. Introduction

In recent years, we can use a large memory address
space from the programs running on 64bit-OS.
However, the physical memory of a computer becomes
a limitation for such memory use. Ordinary, when a
program requires more memory than physical memory
in a computer, memory pages are swapped in/out a
hard disk. However, accessing remote memories in
network-connected computers becomes faster than
accessing local hard disks, because of the recent
development of high-speed networks.

Researchers who simulate a scientific numerical
problem usually develop a sequential program first and
validate it with small scale problems. Then, they
simulate large scale problems. To deal with large scale
problems, the programs sometime require more
memory than a local memory in one computer. In such
cases, the sequential programs have to be converted to
parallel programs that utilize large memories on

multiple nodes in a cluster. However, developing a
parallel version of the programs is not an easy task for
people who are not familiar with parallel programming.
Moreover, it will impose them to pay extra costs for
debugging and validating a parallel version of
programs. Additionally, not all sequential program
models can be converted to parallel ones because of
the nature of original simulation models. In these cases,
some users prefer to run existing sequential programs
using large memory distributed over cluster nodes,
even if the execution time becomes slower than the
time of a parallel version of the programs.

Because of these reasons, the Distributed Large
Memory (DLM) System [1], which was a virtual large
memory system distributed over cluster nodes, was
developed. The DLM system is designed for sequential
programs that need a large amount of data beyond the
local physical memory. It was reported that the DLM
system using remote memory achieved higher
performance of program executions compared to the
kernel swap system with a local hard disk. In this
paper, we propose a DLM compiler, which enables us
to use rich memory distributed over multiple nodes of
a cluster with existing sequential programs. It also
eliminates the extra cost for developing parallel
programs.

To use remote memory for a sequential program,
there are two ways: kernel-level implementations and
user-level implementations.

Kernel-level implementations have limited
portability because they ordinary require a special
hardware and/or kernel modifications. Kernel-level
implementations usually replace a traditional swap
device, a hard disk, with remote memory. It was
reported that changing a swap device to remote
memory often caused performance degradation in page
swapping [1]. One of the reasons is that the swap
system of a traditional OS is usually tuned to a hard
disk. Another reason is unstable behavior in remote
communication under the lack of memory when a
swap daemon is initiated. However, kernel
implementation gives complete transparency to a user.

It means there is no need to change programs for using
a remote memory.

User-level implementations are designed
independent from OS kernel and swap daemon, and
run as a user-level program. They have high portability,
but it imposes users to suit their programs to the APIs
provided by the implementations. User-level
implementations generally achieve a high
communication performance than kernel-level
implementations, because they are executed without
initiating swap daemon.

The JumboMem [2], the one of the user-level
implementations, improved user transparency. It was
achieved by providing a dynamic linkable shared
object library and replacing memory-related functions,
such as malloc, with newly implemented JumboMem
functions, which utilize remote memory in the
JumboMem address space. It realizes perfect user
transparency. There is neither need to modify user
programs, nor to recompile existing binary programs.
However, there are two problems. First is that
JumboMem only supports dynamic memory allocation
functions, and it does not support static array
declarations, which are commonly used in many
numerical programs. The second problem is that all
malloc functions are replaced with JumboMem
functions which use remote memories. It sometimes
causes significant problems, e.g. I/O buffer memory
for file access might be allocated in remote memory,
which must be always allocated in local memory.

The DLM system is a user-level software to achieve
high portability and performance. It resolves two
problems occurred in JumboMem. First, the DLM
provides the API that can support both dynamic
memory allocation and static array data. The second,
users can distinguish two types of data, data allocated
in both remote memory and local memory and data
always exist in local memory. To improve low user
transparency in user-level implementation, the DLM
compiler is proposed.

2. The DLM System

2.1. The DLM System Overview

Fig.1 shows an overview of DLM system. The
DLM system runs a sequential user program at Cal
Host node. The DLM system automatically allocates
data in remote memory of Mem Server node, when a
user program needs more memory than the size of a
local memory. When the user program accesses certain
data in remote memory, the DLM system swaps in the

page which contains the data to Cal Host node, and
swaps out the other pages to Mem Server node. The
unit of swapping is DLM page size that is a multiple of
the OS page size. General protocol, TCP/IP or MPI, is
used in the DLM system. So it can run on a wide
variety of high-speed communication media like
10Gbps Ethernet, Infiniband, and Myri10G. It looks
like a sequential program execution for users, but
actually it runs as a user-level parallel program using
distributed memory over a cluster.

Fig. 1 Example of the DLM system

2.2. Program Interface of the DLM System

The proposed interface is designed to alleviate a

user’s load of rewriting programs. The knowledge of
parallel programming is unnecessary to use the DLM
system.

As previously mentioned, the DLM supports two
types of memory allocations, both a static array
declaration and a dynamic memory allocation for
remote memory. Users can specify large data, called
DLM data, which are allocated not only in local
memory but also in remote memory when the amount
of local memory is not sufficient for the data.

Generally in C programs, global variables and static
variables are allocated in static data area, local
variables are allocated in stack memory area, and
dynamically allocated data by malloc function are
allocated in heap memory area. However, in the DLM
system, the DLM data are always allocated in heap
memory area of local/remote memory irrespective of a
global static array or a local variable. This enables us
to use a large amount of data, not limited by local
memory size or a compiler.

The DLM programs are identical to ordinary C
programs, except attaching dlm before the DLM data
declarations. The dlm is introduced as one of the
storage specifiers in C grammar, like extern and static.
DLM’s API has 2 features as follows:

Cal Process

Cal Host node

Mem Server node

MemServer
Process

Mem Server node

MemServer
Process

Mem Server node

MemServer
Process

- A user can distinguish the DLM data from
ordinary data using dlm specifier. The first line
in Fig.2 represents an ordinary data declaration,
which allocates data in local memory only. The
second line represents the DLM data
declaration, which allocates data in a local
memory and/or a remote memory on memory
servers.

- A user can specify 2 types of the DLM data.
The first line in Fig.3 represents a static array
declaration of the DLM data. The second line
represents a dynamic memory allocation of the
DLM data.

Fig. 2 Ordinary data and the DLM data declarations

Fig. 3 Static and dynamic DLM data allocation

Fig.4 shows a DLM sample program, which

calculates median values of multiple array data. The
array a(①) at the beginning of the program includes
10 integer arrays, which has 10G elements in each
array. The main function randomly assigns integer
numbers to the array a. In the median function, local
array variable b(②) is created, and one of the integer
array of a is copied to b. Then, qsort function sorts the
array b and the median function returns the median of
the array b. The essence of the program is preserving
the original order of the array a by copying one of the
array a to the array b at every time when median is
called.
 The size of local array variable b at ② in Fig.4 is
40GB. In an ordinary C program, it is allocated in a
stack memory, so the program execution is usually
restricted by the size of local memory and the size of
stack memory area. On the other hand, the DLM data
are always allocated to heap memory area in local
memory and/or remote memory, even if they are
declared as local variables in programs. So the
program using large data specified as the DLM data is
hardly limited in an actual execution by the available
local memory size or a kernel memory layout.

Fig. 4 A sample of the DLM program

3. Structure of the DLM Compiler

The DLM compiler is designed to have 2 parts for
high portability. The first part includes a general C
preprocessor and a DLM translator, dlmpp. The second
part is a general C compiler.

Fig.5 shows procedures in the DLM compiler. First,
the DLM compiler converts a DLM program including
dlm specifiers to an ordinary C program by dlmpp
translator. It performs 3 tasks: (1) insert DLM library
functions, (2) transform the DLM data declarations to
ordinary C pointers, and (3) rename the variables
accessing to the DLM data by considering their scopes.
 The next, the DLM compiler creates an execution
program from the C program by a gcc compiler with
the dlm library. Fig.6 shows an example of compile
command, dlmc, which makes an execution program
(prg1) from a DLM program (prg.c) with dlm library.

int a[100][10] ; →allocate in a local memory only
dlm int b[1000][1000] ; → allocates in local

memory and/or
remote memory

dlm double c[1000][1000] ;
 →static array declaration
c =(double(*))dlm_alloc(1000*1000*sizeof(double));
 →dynamic memory allocation

#include <stdio.h>

#include <stdlib.h>

#include <dlmm.h>

#define NUM 10

#define LENGTH (10*(1L << 30)) // 10GB

dlm int a[NUM][LENGTH]; // 400GB ①

int median(long int num) {

 dlm int b[LENGTH]; // 40GB ②

 long int j, ans;

 for (j = 0; j < LENGTH; j++)

 ③ b[j] = a[num][j]; ④

 qsort(b,LENGTH,sizeof(int),compare_int); ⑤

 ans = b[LENGTH/2]; ⑥

 return ans;

}

int main (int argc, char *argv[])

{

 long int i, j;

 for (i = 0; i < NUM; i++)

 for (j = 0; j < LENGTH; j++)

 ⑦ a[i][j] = rand();

 for (i = 0; i < NUM; i++)

 printf("median[%d] = %d\n", i, median(i));

 return 0;

}

The DLM system is also available by manually
rewriting programs using dlm functions and executing
them with an ordinary C compiler. However, the DLM
compiler gives a great benefit for users by saving the
time bothering to rewrite the programs.

Fig.5 Components of DLM compiler

Fig. 6 A DLM compile command example

The dlmpp translator translates Fig.4 to Fig.7

(header files introduced by C preprocessor are omitted).
Following procedures are performed when translating
DLM programs to C language programs by the DLM
compiler.

- Insert the dlm_startup function after variable
declarations of the main function. The
dlm_startup activates the DLM system. It
creates memory server processes at memory
server nodes and setups communication
between memory server processes and a
calculation process. (See Fig.7 - ⑨)

- Insert the dlm_shutdown function before all
return statements in the main function. The
dlm_shutdown terminates the DLM system. It
finishes the communication with memory
servers and shut down memory server
processes. (See Fig.7 - ⑫,⑬)

- Change DLM array data declarations to pointer
base declarations. (See Fig.4 - ①,② → Fig.7 -
①,②). Insert dlm_alloc functions of the DLM
data after the dlm_startup function(See Fig.7 –
③,⑩). Rename all of the DLM data variables
to _dlm_variable name_block number (See

Fig.4 - ③,④,⑤,⑥,⑦ → Fig.7 - ④,⑤,⑥,⑦,
⑪).

- Insert dlm_free function at the last parts of all
blocks and functions, if dlm variables are
declared in the blocks and/or functions. (See
Fig.7 - ⑧)

Fig. 7 A C program converted by dlmpp translator

DLM Program

dlmpp Translator

C Language Program

gcc Compiler

Execution Program

DLM
Library

link

C preprocessing

・ Insert DLM Library
functions

・Change DLM array data
to pointer access

・Renaming DLM data
with data scope check

dlmc prg.c –o prg1 -ldlm

 ・・・・・・・・・・・・・

int (*__dlm_a_0)[(10*(1L<<30))]; ①

int median(long int num) {

 int (*__dlm_b_1); ②

 long int j, ans;

 __dlm_b_1 = (int (*))dlm_alloc((10*(1L<<30))*sizeof(int)); ③

 for (j = 0; j < (10*(1L << 30)); j++)

 ④__dlm_b_1[j] = __dlm_a_0[num][j]; ⑤

 qsort(__dlm_b_1,(10*(1L << 30)),sizeof(int),compare_int); ⑥

 ans = __dlm_b_1[(10*(1L << 30))/2]; ⑦

 dlm_free(__dlm_b_1); ⑧

 return ans;

}

int main (int argc, char *argv[])

{

 long int i, j;

 dlm_startup(&argc, &argv); ⑨

__dlm_a_0 = ⑩

(int(*)[(10*(1L<<30))])dlm_alloc(10*(10*(1L<<30))*sizeof(int));

 for (i = 0; i < 10; i++)

 for (j = 0; j < (10*(1L << 30)); j++)

 ⑪__dlm_a_0[i][j] = rand();

 for (i = 0; i < 10; i++)

 printf("median[%d] = %d\n", i, median(i));

 dlm_shutdown(); ⑫

 return 0;

 dlm_shutdown(); ⑬

}

4. DLM programs for DLM System

In this section, we show some examples of
rewriting actual programs for the DLM system.
Basically, what users have to do for converting
existing sequential programs to DLM programs is only
2 or 3 things: (1) inserting dlm.h at the top of the
program, (2) attaching dlm before large data
declarations, and (3) replacing malloc with dlm_alloc.

Fig. 8 shows all modified parts for Himeno
Benchmark [3]. In the original program, large data are
declared as global static variables. Since the source file
is only one, static is unnecessary. Here only 4
modifications are required (Fig.8).

Fig. 8 Modification of Himeno Benchmark

Fig.9 shows the case of STREAM Benchmark [4],

where only one modification is required.

Fig. 9 Modification of STREM Benchmark

Fig.10 shows the modified parts of IS in the NAS

Parallel Benchmark [5]. In the IS, the first 3 arrays are

declared as DLM data, while the last one is declared as
normal because its size is very small.

Fig. 10 Modification of NPB IS.B

In numerical simulations, static array declarations
are often used for large data. Without the DLM
compiler, users have to translate original static
declarations of data arrays into dynamic data
allocations (dlm_alloc) and convert all the original
data-array accesses into pointer-based accesses. The
DLM compiler reduces the rewriting costs of programs
by users to its minimum. Only attaching dlm to the
existing sequential programs is sufficient for using a
remote memory for large data.

5. The DLM performance

 This section shows one of benchmark performances
using the DLM system. The experiments are conducted
on a public open cluster of the T2K Open
Supercomputer HA8000 cluster with the MPI batch
queuing system [6] (Table 1).

Table 1 Environment of Experiment

T2K Open Supercomputer, HA8000

Machine HITACHI HA8000-tc/RS425

CPU
AMD QuadCore Opteron 8356(2.3GHz)

4CPU/ node

Memory 32GB/node (936 nodes),　128GB/node (16nodes)

Cache L2 : 2MB/CPU (512KB/Core),　L3 : 2MB/CPU

Network
Myrinet-10G x 4, (40Gbps)　bonding4
Myrinet-10G x 2, (20Gbps)　bonding2

OS Linux kernel 2.6.18-53.1.19.el5 x86_64

Compiler
gcc version 4.1.2 20070626,　Hitachi Optimizing C

mpicc for 1.2.7

MPI Lib MPICH-MX (MPI 1.2)

Original Version
static float p[MIMAX][MJMAX][MKMAX];
static float a[4][MIMAX][MJMAX][MKMAX],

b[3][MIMAX][MJMAX][MKMAX],
c[3][MIMAX][MJMAX][MKMAX];

static float bnd[MIMAX][MJMAX][MKMAX];
static float wrk1[MIMAX][MJMAX][MKMAX],

wrk2[MIMAX][MJMAX][MKMAX];

DLM Version
dlm float p[MIMAX][MJMAX][MKMAX];
dlm float a[4][MIMAX][MJMAX][MKMAX],

b[3][MIMAX][MJMAX][MKMAX],
c[3][MIMAX][MJMAX][MKMAX];

dlm float bnd[MIMAX][MJMAX][MKMAX];
dlm float wrk1[MIMAX][MJMAX][MKMAX],

wrk2[MIMAX][MJMAX][MKMAX];

Original Version
static double a[N+OFFSET],

b[N+OFFSET],
c[N+OFFSET];

DLM Version
dlm double a[N+OFFSET],

b[N+OFFSET],
c[N+OFFSET];

Original Version
INT_TYPE key_array[SIZE_OF_BUFFERS],
 key_buff1[SIZE_OF_BUFFERS],
 key_buff2[SIZE_OF_BUFFERS],

partial_verify_vals[TEST_ARRAY_SIZE];

DLM Version
dlm INT_TYPE key_array[SIZE_OF_BUFFERS],

 key_buff1[SIZE_OF_BUFFERS],
key_buff2[SIZE_OF_BUFFERS];

INT_TYPE partial_verify_vals[TEST_ARRAY_SIZE];

 The benchmark used here is Himeno Benchmark [3],
which measures the speed of major loops for solving
Poisson’s equation. It uses multiple loops of iterations
and is known as a heavy memory access program.
 Fig. 11 shows the performance of the Himeno
Benchmark of ELARGE size, 513x513x1025 float
array (15GiB). The benchmark outputs the
performance in MFLOPS, but the values here are
translated into the relative execution time.
 The horizontal axis of Fig. 11 represents the ratio of
local data size/total data size (local memory ratio L)
used in the benchmark program. Note that (1-L)% of
the total data resides in remote memory, while the
remaining L% in local memory. The performance with
the DLM system is measured by limiting the size of
available local memory in Cal Process node. The
vertical axis of Fig.11 represents a relative execution
time in the DLM system compared with an ordinary
execution time without the DLM. In an ordinary
execution, a program uses only local memory, where
the local memory ratio is 100%. The performance of
ELARGE in an ordinary execution is 415 MFLOPS.

Fig.11 shows the case of using 1MB DLM page size
for bonding=4 (40Gbps) network. According to Fig.
11, even if the local memory ratio becomes 6.9%,
which means 93.1% of the total data resides in remote
memory, the benchmark execution time becomes 2.3
times longer than the ordinary execution time.

We also evaluate the newly created larger data
version of the Himeno Benchmark with XLARGE,
1025x1025x2049 float array (112GiB). 6 nodes and
40Gbps network is used in this experiment, where
20GiB local memory in each node is used for
execution. In this benchmark, a normal execution
using only local memory is impossible because
physical memory size in one node is limited 32GiB.
Here the absolute performance is 179.4 MFLOPS,
where the local memory ratio is 17.4%.
 Moreover, a larger data size version, XLARGE-d
with 1025x1025x2049 double array (2 25GiB) is
created for evaluation. This experiment uses 12 nodes.
The size of local memory for each node and network
bandwidth used here are the same as the previous
experiment. The absolute performance becomes 88.8
MFLOPS, where the local memory ratio is 8.1%.
 These experiments show that existing sequential
programs can be used for large-scale problems beyond
the limitation of local physical memory size.

Fig.11 Performance of DLM with Himeno Benchmark

6. Conclusion

The DLM system makes easy to use remote
memories in a cluster without parallel programming. In
the previous DLM system, users had to rewrite
existing programs by inserting dlm functions, such as
dlm_startup, dlm_alloc and dlm_shutdown, and
modifying array data to pointer-based data. The
proposed DLM compiler relieves users from these
annoying program rewrites. With this compiler, users
are only required to attach dlm before the DLM data.

The proposed compiler will make people to process
large data easily by accessing a cluster with sequential
programs, and it will save time for rewriting a
sequential program considerably.

 References

[1] H. Midorikawa, K. Saito, M. Sato, T.Boku “Using a
Cluster as a Memory Resource: A Fast and Virtual Memory
on MPI”, Proc. of IEEE International Conference on Cluster
Computing, IEEE cluster 2009, 2009-09, page 1-10.
[2] S. Pakin, G. Johnson, “Performance Analysis of a User-
level Memory Server”, Proc. of IEEE International
Conference on Cluster Computing, IEEE cluster 2007, 2007-
09, pp. 249-258.
[3] Himeno Benchmark website [Online],
http://accc.riken.jp/HPC/HimenoBMT/downloadtop.ht
ml, 2011-5
[4] STREAM Benchmark website [Online],
http://www.cs.virginia.edu/stream/ref.html, 2011-5
[5] NPB (NAS Parallel Benchmarks) website [Online],
http://www.nas.nasa.gov/Resources/Software/npb.html,
2011-5
[6] T2K Open Supercomputer, HA8000, http://www.cc.u-
tokyo.ac.jp/service/ha8000/, 2011-5

