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Abstract— A remote memory paging system called a 
distributed large memory (DLM) has been developed, 
which uses remote-node memories in a cluster, as the main 
memory extension of a local node. The DLM is available 
for out-of-core processing, i.e., processing of large-size data 
that exceeds the main memory capacity in the local node. 
By using the DLM and memory servers, it is possible to run 
multi-thread programs written in OpenMP and pthread 
for large-scale problems on a computation node whose 
main memory capacity is smaller than the problem data 
size. A page swap protocol and its implementation are 
significant factors in the performance of remote memory 
paging systems. A current version of the DLM has a bottle-
neck in efficient page swapping because all communication 
managements between memory servers and the local 
computation node are allocated to one system thread. This 
paper proposes two new page swap protocols and 
implementations by introducing another new system 
thread to alleviate this situation. They are evaluated by a 
micro-benchmark, Stream benchmark, and a 7-point 
stencil computation program. As a result, the proposed 
protocol improves the performance degradation ratio, i.e., 
the performance using the DLM divided by the 
performance using only the local memory, from 57% in the 
former protocol to 78% in stencil computation, which 
processes data whose capacity is four times larger than the 
local memory capacity. 

Keywords— out-of-core; remote memory; paging; 
swap; protocol; page swap; large memory; 

I.  INTRODUCTION 

There is an increasing demand for the use of large 
capacity memory for large-scale scientific and 
engineering computations; however, there are limitations 
to the main memory size that can be loaded into a single 
computer owing to hardware limitations and power 
consumption. The most common technique to resolve 
this is using distributed memories over nodes in a cluster 
by converting existing programs to MPI (Message 
Passing Interface) programs. The MPI is widely used to 
process large-scale data, although it is not always 
possible to convert the original programs to MPI 
programs, which are parallel processing programs based 
on the distributed memory model. In some cases, 
algorithms, libraries, and programs were originally 
designed under shared memory model, and it is very 
difficult to convert them to MPI programs. In other cases, 
program conversion is possible but its development cost 

is too high, and it takes to a long time for users to accept 
such programs. 

The remote memory paging provided by DLM [1] is 
an effective option for solving this issue. The DLM 
provides a virtual large memory by remote memory 
paging using distributed memories in multiple computers 
connected to a high-speed network. The DLM supports 
multi-thread programs [2] written in OpenMP and 
pthread. By using the DLM, it is possible to run multi-
thread programs for large-scale problems on a 
computation node whose main memory capacity is 
smaller than the problem data size. 

Fig. 1 shows an overview of the DLM system. The 
system consists of one computation node and several 
memory server nodes. A user program runs on the 
computation node, and memory server nodes provide 
their memory to the user program. Users can allocate data 
size that is larger than the local memory capacity using 
the dlm_alloc() function. The function automatically 
allocates data area in remote memories in memory 
servers if the remaining local memory capacity is not 
sufficient for data. In the computation node, a DLM 
system thread called communication thread (com-thread) 
is created when a user program calls the dlm_startup() 
function. The com-thread is responsible for 
communication between a computation node and 
memory nodes and manages page requests from user 
threads in a request queue. 

When one of the threads in a user program accesses 
data which is not in the local memory in the computation 
node but in a remote memory node, segv signal is 

 
Fig 1 DLM Structure 
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generated. In a segv handler, the user thread puts a page 
request into the request queue and waits for the page 
fetch from a memory node. The com-thread extracts this 
page request from the queue, identifies the memory node 
that has the requested page, and sends out a page request 
to the memory node. Then, the com-thread gets the page 
from the memory node, and sends back another page in 
the computation node to the memory node as a swap-out 
page. Next, it temporarily suspends all other user threads. 
After copying the sent page to the appropriate user 
address space, it restarts all user threads. The page 
swapping in the DLM is performed in a unit of the DLM 
page size that can be defined by users. The user address 
space of a user program is managed by the DLM page 
table. Each page table entry contains memory nodes that 
possess the page.  

A page swap protocol and its implementation are 
significant factors in the performance of remote memory 
paging systems. The current version of the DLM has a 
bottle-neck in efficient page swapping because all 
communication and page swap managements between 
memory servers and a local computation node are 
allocated to one system thread—the com-thread. This 
paper proposes two new page swap protocols and 
implementations by introducing another new system 
thread to alleviate this situation. The first one introduces 
the receiver thread, while the second one introduces the 
page swap thread. They are evaluated by a micro-
benchmark, Stream benchmark, and a 7-point stencil 
computation program. As a result, the second protocols 
improve performance degradation for all the programs 
above. The paper also clarifies the problem in the first 
protocol. 

II. BACKGROUND AND RELATED WORKS  

The DLM provides a large capacity of virtual 
memory using distributed memories on multiple nodes; 
however, it does not support distributed parallel 
processing using CPUs on multiple nodes, unlike in MPI 
parallel programs. It makes it easier to port multi-thread 
programs and algorithms designed on a shared memory 
model. In the DLM, multiple nodes in a cluster are 
regarded as memory resource not as CPU resource. 
Program execution on a single node using remote 
memory has a demerit in terms of the execution time, 
which takes longer than using only local memory. 
However, it gives us a merit in terms of seamless and 
easy porting from newly designed algorithms and 
programs examined using small local memory to those 
using the DLM to confirm their effectiveness in a 
realistic large-scale problem. The DLM is for users who 
prefer a longer execution time using remote memory to 
converting their programs to MPI programs while paying 
significant costs. 

The systems based on the partitioned global address 
space (PGAS) model [6–10] also realize a large address 
space using distributed memories such as the DLM. 
Although PGAS systems provide a global view of shared 
data, most these systems have limits in accessible areas 

of shared data on remote nodes. Typically, only sleeve 
areas in stencil computation are accessible by only 
neighboring nodes. An underlying node-communication 
scheme in many PGAS systems employ one-sided 
communications, such as GET/PUT, in GASNET [11], 
and MPI, where it is necessary to pre-register accessible 
data areas for communication. Moreover, APIs 
implemented in PGAS systems are very different from 
those in OpenMP and pthreads. In contrast, the DLM has 
no limit in accessing remote data and provides almost the 
same APIs as those in shared memory model programs. 

   Another example, which realizes global address 
space using multiple nodes, is software-based distributed 
shared memory systems (SDSM) [12–16] that provide 
not only a global view of shared data but also full 
accessibility to global data in remote nodes. However, 
parallel processing with full accessibility to global data 
on multiple nodes requires some relaxed memory 
consistency models by performance reasons, it makes 
SDSM programs different from programs based on a 
shared memory model. Besides SDSM, remote memory 
accessing systems [17, 18] that are similar to  the DLM 
were proposed; although such systems, except ArgoDSM 
[15], employ obsolete implementation such as socket-
based communication on Ethernet, and do not support 
multi thread execution.  

   In addition to these systems, there are several high-
end systems supporting single address space. The 
ScaleMP [19] unifies conventional Linux servers with 
specialized software configuration to a single address 
space system. The recently announced “The machine” by 
HPE [20, 21] targets big-data processing. It is expected 
to provide 160 TiB address space with state-of-the-art 
memory devices. However, such expensive systems are 
only acceptable to limited users. The DLM is widely 
available to realize a large virtual memory at low cost for 
general servers without special memory devices or large-
capacity NVMe flash SSDs.  

The page swap protocols in this paper focus on how 
to efficiently implement page swap communication 
among multiple threads that are dynamically created and 
terminated in user program execution. The investigation 
of page replacement policies in the DLM is out of the 
scope of this study, but was carried out in our earlier 
study [3]. All experiments in this paper use a basic 
CLOCK-like replacement policy. Recent MPI 
implementations support a higher MPI thread support 
level—MULTIPLE; however, it is well known that MPI 
performance with MULTIPLE support level is degraded 
compared with the default support level, FUNNELED or 
SERIALIZED. Thus, increasing the number of DLM 
system threads can possibly degrade the performance of 
MPI communication and increase the overhead of mutual 
exclusion among system threads.   



III. SWAPPING PROTOCOL INTRODUCING RECEIVER 

THREAD  

A. Receiver thread  

In the current DLM shown in Fig. 1, all page requests 
generated by multiple user threads are processed by only 
one thread, the com-thread, in a step-by-step manner. 
The com-thread sends a page-request message to a 
memory node, receives requested page from the memory 
node (swap in), copies page to user data area, and sends 
back one of the other local page (swap out) sequentially 
for each page request generated by many user threads. It 
is considered as the biggest performance bottleneck in 
page swapping. To solve this problem, another system 
thread called the receive-thread (recv-thread) and another 
request queue called the external-request-queue are 
introduced as shown in Fig. 2. The recv-thread is 
responsible for receiving pages sent from memory nodes. 
Other procedures in page swapping, i.e., send page 
request, page copy to user data, and swap out, are still 
managed by the com-thread. After the recv-thread 
receives a page from a memory server, it inserts a page-
apply request in the external-queue. The com-thread 
processes both requests in the external-request-
queuewhere the recv-thread inserts the request, and the 
internal-request-queue where user threads insert requests. 
Introducing the recv-thread allows the computation node 
to simultaneously send requests to each memory node 
and receive data from memory nodes, which decreases 
the overhead incurred for page swapping. The next 
section describes a protocol called the R58, which we 
used in this implementation. 

 

B. Swap Protocol R58 

Swap Protocol R58 which incorporates the receiver 
thread is detailed below. The unrevised DLM is referred 
to as Swap Protocol R3.  

1) When a user thread generates segv signal, the 
thread inserts a page request to the internal-
request-queue in the segv signal handler.  

2) The com-thread checks the internal-request-
queue and sends a page request to the memory 
node who has the requested page. 

3) The memory node processes the page request 
and sends the page to the computation node.  

4) The recv-thread receives the page from the 
memory node in the page receive-buffer and put 
a page-apply request into the external-request-
queue.  

5) The com-thread extracts the page-apply request 
from the external-request-queue, temporarily 
suspends all user threads, and copies the page 
to the user data area.  

6) The com-thread sends one page in the 
computation node to a memory node as a swap-
out page 

7) The com-thread then restarts the user threads.  

C. Micro benchmark Performance Evaluation of 
Protocol R58  

We created a micro benchmark like the one in Fig. 3 
to evaluate the performance of swap protocol R58 which 
incorporates the recv-thread. The micro benchmark 
sets aside 2GB array within the DLM data area, accesses 
the array in units of page sizes after it initializes all of the 
elements of the array with element numbers, and checks 
to see if the figures are properly initialized. That is to say, 

 
Fig 3 Micro Benchmark 

#define ENUM ((unsigned long int) (1L<<28))

int main(int argc, char *argv[]){

dlm_startup(&argc, &argv);

array = (unsigned long int *) dlm_alloc(

sizeof(unsigned long int) * ENUM); //2GB alloc

#pragma omp parallel for

for (i = 0; i < ENUM; i++) array[i] = i;

for( j = 0; j < 3; j++)

#pragma omp parallel for

for (i = 0; i < ENUM; i+=(1L<<17)) //data access per 1MB

if (array[i] != i) return 1;

dlm_shutdown();

return 0;

}

TABLE I ENVIRONMENT I 

 

CPU Intel® Xeon® CPU E5-2687W 0 @ 3.10GHz 
2CPU × 8core/node

Memory 64GB/node

Cache L2 256KiB
L3 20MiB

Network Infiniband FDR

OS CentOS 7.1.1503 (Core) Linux 3.19.5

Compiler gcc version 4.8.3

MPILib MVAPICH2 version 2.0.1

 
Fig 2 DLM structure which includes the Receiver thread 
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in addition to continuing contiguous sequential writing 
using multiple threads, the micro benchmark conducts 
non-contiguous readings of the DLM page units. The 
latter-half of reading is a particularly grueling test—a 
vast amount of page requests is sent out via multiple 
threads.  

The operation experiment environment is shown in 
TABLE I. The computation node’s DLM data area was 
set at 800 MiB, the memory node’s DLM data area were 
set at 6000 MiB, and 1 memory node was used and 
initialized with a page size of 1MiB.  

The results of the experiment are shown in Fig. 4. The 
right bar shows the execution time for R3 and the left bar 
shows the execution time for R58. The x-axis shows the 
number of threads used for the computation and the y-
axis shows the execution time.  

After introducing the R58 swap protocol, the 
execution time for 1 thread increased approximately 2.75 
times more when compared to the R3 execution time. In 
order to identify the places significantly extending the 
execution time, we set the 5 following measurement 
points. We sought out the averages for each measurement 
point for all page requests occurring within the program.  

1) From right after a segv signal occurs to the 
point where a com-thread calls upon the 
internal-request-queue (A1-A2) 

2) From the point where the com-thread requests 
a page up to the point where the recv-thread 
gets the page (A2-A3)  

3) From the point where the page is received and 
put into the external-request-queue up to the 
point where the com-thread is called upon (A3-
A4) 

4) From the point where the com-thread sends out 
the swapped page up to the point where threads 
are restarted (A4-A5) 

5) From the point where the threads restart up to 
the point where all the page swaps are 
completed  

Fig. 5 is a graph that captures the execution time for 
each measurement point under the R58 Swap Protocol 
for each initialized thread. The x-axis shows the number 
of threads used for computation and the y-axis shows the 
execution time.     

Under the R58 Swap Protocol, as depicted in this 
graph, a page was received from memory node in 3) after 
it is put into the external-request-queue, the time it takes 
for the page to be called upon by the com-thread for just 
1 thread was 7% of the execution time, but when 12 
threads were used they occupied approximately 80% of 
the execution time. Furthermore, the time up the point 
from where the 1) com-thread extracted a request from 
the internal request queue increased as the number of 
threads increased. This phenomenon occurred because 
under the R58 Swap Protocol the extraction of requests 
from the internal-request-queue and the external-request-
queue occur in tandem out of a principle of fairness, so it 
is difficult to say that there is efficiency in the process 
when there is bias in the number of request for both 
queues. In order to address this issue, we tested out 
several revisions to the queue extraction scheduling. 
However, we realized that effectively adapting the 
process to a dynamically fluctuating number of page 
requests and a fluctuating number allocation requests for 
pages being received would be difficult. Therefore, 
improving the efficiency of the R58 Swap Protocol—
leaving the overall control of the DLM to com-thread and 
creating thread to only receive requests—would be a 
challenge. 

IV.  PROTOCOL USING PAGE-SWAPPING RECV-
THREAD  

A. Swap Protocol R77  

The results of the performance evaluation experiment 
which utilized micro benchmarks from the R58 Swap 
Protocol showed us that having a recv-thread receive 
pages, and putting a page allocation request into the 
external-request-queue after having the com-thread 
check the external-request-queue and process the request 
in particular took a fair amount of time. So, we 

 
Fig 4 Execution time for R58 and R3’s micro benchmarks 
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Fig 5 Execution time for each measurement point under R58 
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constructed the R77 Swap Protocol to move the DLM 
page swapping process from the com-thread to the recv-
thread. The steps for the R77 Swap Protocol are written 
below.  

1) When a user thread generates segv signal, the 
thread inserts a page request to the internal-
request-queue in the segv signal handler. 

2) The com-thread checks the internal-request-
queue and sends a page request to the memory 
node who has the requested page. 

3) The memory node processes the page request and 
sends a page to the computation node.  

4) The recv-thread temporarily suspends user 
threads and directly receives a page to the user 
data area  

5) The recv-thread checks the page table and sends 
one page held within the computation node to a 
memory node as a swap-out page 

6) The recv-thread restarts the user thread  

The special characteristic of the R77 Swap Protocol is 
that when the recv-thread receives a page, the page does 
not go through a buffer—it is directly received by the 
memory and the recv-thread executes the page swapping. 
Therefore, this protocol is able to swap pages without 
processing the external-request-queue. Thus far, com-
thread could only access data DLM’s internal data; 
however, under the R77 Swap Protocol, recv-thread 
could access the data as well. As a result, we also 
installed an exclusive control structure for internal data.  

B. Micro benchmark Performance Evaluation of the 
R77 Protocol  

We conducted an evaluation experiment using the 
micro benchmarks utilized by the R58 Swap Protocol to 
check R77 Swap Protocol’s performance. To compare 
R77 with R58, we set the 4 following measurement 
points and sought out the average for each measurement 
point.  

1) From right after a user thread causes a segv 
occurs to the point where com-thread calls upon a 
request from the internal-request-queue (A1-A2) 

2) From the point where the com-thread sends out 
a page request to the point where recv-thread 
receives a page (A2-A3) 

3) From the point where the recv-thread suspends 
user threads, receives a page, sends a swapped-out 
page to the memory node up to the point where the 
recv-thread restarts the user threads (A4-A5)  

4) From the point where the user threads are 
restarted up to the point where page swapping is 
completed (A5-A6)  

Fig. 6 shows the performances of both R77 and R3. 
The y-axis shows the execution time and the x-axis 
shows the number of slides used for computation. When 

compared with R3, R77 has an execution time of 1.25 
times faster for 1 thread and R77 achieved approximately 
a 1.3 times faster for 12 threads. When compared with 
R58, R77 was able to run at 1/4 of the total execution 
time for one the thread and 1/3 of the total time for 
initializing 12 threads. 

Fig. 7 is a graph of execution time during each 
measurement point for each implemented thread in 
regard to R77. The x-axis shows the number of threads 
used for calculation and the y-axis shows each time 
component. This graph shows that the under R77 the wait 
time—80% of which was occupied by the internal and 

 
Fig 6 Execution time for R77 and R3’s micro benchmarks 
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Fig 7 Execution time for each measurement point under R77 
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TABLE II ENVIRONMENT II 

 

CPU Intel® Xeon® CPU E5-2687W v3 @ 3.10GHz 
2CPU × 10core/node

Memory 128GB/node

Cache L2 256KiB
L3 25MiB

Network Infiniband FDR

OS CentOS 7.1.1503 (Core) Linux 3.19.5

Compiler gcc version 4.8.3

MPILib MVAPICH2 version 2.0.1



external-request-queues using the R58 protocol (A3-A4 
of Fig 5—has disappeared. However, 2) has taken more 
time. Under protocol R77, the fact that the recv-thread 
continues to swap pages for each memory node is 
efficient, but the fact the recv-thread sends and receives 
pages required for 1 page swap, there is a performance 
bottleneck. In a case where multiple memory nodes exist, 
even if other pages are already sent to the memory node, 
the nodes are not able to process them right away. 

V.  PERFORMANCE EVALUATION USING 

APPLICATIONS  

In section IV, we investigated the effect of the revised 
protocol on actual application programs. We utilized the 

7-point stencil computation that used temporal blocking 
[4] and Stream [5] for this experiment. TABLE I was 
used in Stream and TABLE II was used in the stencil 
computation in relation to operating environment.  

A. 7-Point Stencil Computation that Utilizes Temporal 
Blocking   

The 7-point stencil computation is one of the most 
basic grid computations and computes with 1 point of 
data that renewed and 6 points of data that adjoin that 
point. The 7-point computation renews all the points of 
data and repeats these over a multiple time steps. As 
shown in Fig. 8, the stencil computation holds two blocks 

that show the amount stored in computation nodes, and 
stores buffers in the computation node and memory 
nodes.  

In this experiment, we executed a 7-point stencil 
computation that used both space blocking and temporal 
blocking. The problem size ranged from 64GiB to 512 
GiB and we measured them using 16 threads. The 
computation node’s DLM data area was set at 120 GiB, 
the DLM data area for the memory nodes was set at 120 
GiB, and the problem size ranged from 64 GiB to 256 
GiB for 3 memory nodes. The 512 GiB problem size used 
5 memory nodes. Measurements were carried out with a 
1 MiB page size.  

Fig. 9 is a graph depicting the relationship between the 
problem size and Effective Mflops/s for the 7-point 
stencil computation which introduced both the R58 and 
R77 Swap Protocols. The x-axis shows the problem size 
and the Y-axis is Effective Mflops/s.  

All data is held within the computation node at the 64 
GiB problem size so there is no difference in 
performance. All data is not contained within the 
computation node for computations with problem sizes 
128 GiB or larger. With this computation, R77 has 
between 1.3 to 1.5 times more Effective Mflops/s when 
compared with R58. Under the R58 protocol, 
performance decreases as the problem size increases. 
When comparing R58 at 64 GiB problem size versus 512 
GiB problem size, only approximately 54% of the 
performance is achieved at the 512 GiB problem size. 
However, when comparing the 64 GiB problem size with 
the 512 GiB problem size under the R77 protocol, 78% 
of the performance is achieved at the 512 GiB problem 
size.  

Fig. 10 is a graphic depicting the relationship between 
the problem size and Effective Mflops/s for the 7-point 
stencil computation run under the R3 and R77 Swap 
Protocols. The x-axis shows the problem size and the Y-
axis is Effective Mflops/s. 

Protocol R3’s performance is close to 1.4 times the 
performance of R77 when run with a 64 GiB problem 
size (remote memory not used). When run with a 

 
Fig 8 Memory layout for Stencil computation 
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Fig 9 Effective Mflops/s for the 7-point stencil computation 
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Fig 10 Effective Mflops/s for the 7-point stencil computation 
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problem size of 128 GiB or greater that uses remote 
memory, Protocol R77’s performance greatly exceeds 
R3’s performance. When run with a problem size of 512 
GiB, Protocol R77 has approximately 1.2 times the 
performance when compared with R3. Under Protocol 
R3, performance decreased to 66% when comparing a 
512 GiB problem size with 64 GiB problem size (with 
only local memory access available). Under these same 
conditions, Protocol R77 was able to achieve 78% of 
R3’s performance. This occurs because page requesting 
and swapping is done independently by the com-thread 
and the recv-thread. Thus, numerous memory nodes are 
able to be processed simultaneously.  

B. Stream Benchmark  

Stream [5] is a benchmark for investigating memory 
access bandwidths. We allocated 3 arrays—that are used 
in the Stream computation—within the DLM data area 
and modified those arrays to carry out the computation. 
The DLM data area for the computation node was set at 
56 GiB. The DLM data area for the memory nodes was 
set at 120 GiB. There was 1 computation node, 4 memory 
nodes, the page size was set at 8MiB and we used 14 
threads for carry our measurements for the computation. 
The total size for the 3 arrays was restricted to a range 
between 48 to 512 GiB and measured. In actuality, the 48 
GiB array did not use remote memory and only accessed 
the local memory of the computation node.  

Fig. 11 shows Stream results under the R77 protocol. 
The y-axis shows bandwidth expressed in a logarithm 
and the x-axis shows the total amount of secured arrays. 
With 48 GiBs, where 3 arrays are stored in the DLM data 
area, there is no difference in performance in relation to 
processing type. However, with 64 GiB and greater, there 
are great differences in terms of performance among the 
3 processes excluding copy. When comparing the 
performance of an array size of 64 GiB with an array size 
of 48 GiB, performance drops to 59%. This is the greatest 
performance loss to occur even when compared with the 
decrease between Protocol R3 and Protocol R58. In 
terms of performance, R77 is 500 MB/s higher than R58.  

Fig. 12 shows Stream result under Protocol R58. The 
copy performance achieved the same level of 
performance as Protocol R3 when operating under an 
array size of 48 GiB with only local access. However, 
when compared to an array size of 48 GiB, an array size 
of 64 GiB performed at 67%. When operating under 
Protocol R3, the performance for an array size of 64 GiB 
achieved 80% of what was achieved when only accessing 
local memory (the performance of an array size of 48 
GiB). Thus, we see that there is a major performance loss 
in terms of memory node communication under Protocol 
R58. The performance for an array size of 168 GiB or 
greater maintained 600 MB/s. 

 

 
Fig 11 Results of Stream implementation under R77  
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Fig 13 Results of Stream implementation under R77(2)  
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Fig 12 Results of Stream implementation under R58   
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Fig 14 Results of Stream implementation under R3   
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Fig. 13 is a graph showing the results of Stream with a 
problem size of 96 GiB or greater under Protocol R77. 
The y-axis shows the bandwidth and the x-axis shows the 
problem size. The performance for an array size of 168 
GiB or more was maintained at 1600 MB/s or greater. 
We see that this has better communication efficiency that 
the R3 and R58 Protocols referenced below. When 
compared with the R3 Protocol, the R77 Protocol is 
approximately 600 MB/s better in terms of performance 
with an array size of 512 GiB. 

Fig. 14 is a graph showing the results of Stream with a 
problem size of 96 GiB or more under Protocol R3. A 
performance of 1000 MB/s is maintained when Protocol 
R3 is implemented with an array size of 168 GiB or more 
which is 4 times the size of the DLM data area that holds 
the computation node.  

VI. CONCLUSION  

In this research, we conducted comparative analysis 
using Stream and a 7-point stencil computation which 
utilized temporal blocking, and implemented and 
designed 2 new communication protocols to increase the 
communication efficiency of the DLM computation node 
and the memory node. As a result, we realized that 
Protocol R77, which approximately 1500 MB/s was 
achievable as remote memory access bandwidth. In the 
future, we plan on newly developing effective copy 
operations (GET, PUT) etc. between the data fixed in the 
local memory, the data extracted to the remote memory, 
and the system used to gather and send multiple pages in 
order to further improve efficiency. 
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