
Design and Evaluation of Page-swap Protocols
for a Remote Memory Paging System

Hikari Oura, Hiroko Midorikawa, Kenji Kitagawa, Munenori Kai
Graduate School of Science and Technology

 Seikei University
Tokyo, Japan

dm166201@cc.seikei.ac.jp, midori@st.seikei.ac.jp

Abstract— A remote memory paging system called a
distributed large memory (DLM) has been developed,
which uses remote-node memories in a cluster, as the main
memory extension of a local node. The DLM is available
for out-of-core processing, i.e., processing of large-size data
that exceeds the main memory capacity in the local node.
By using the DLM and memory servers, it is possible to run
multi-thread programs written in OpenMP and pthread
for large-scale problems on a computation node whose
main memory capacity is smaller than the problem data
size. A page swap protocol and its implementation are
significant factors in the performance of remote memory
paging systems. A current version of the DLM has a bottle-
neck in efficient page swapping because all communication
managements between memory servers and the local
computation node are allocated to one system thread. This
paper proposes two new page swap protocols and
implementations by introducing another new system
thread to alleviate this situation. They are evaluated by a
micro-benchmark, Stream benchmark, and a 7-point
stencil computation program. As a result, the proposed
protocol improves the performance degradation ratio, i.e.,
the performance using the DLM divided by the
performance using only the local memory, from 57% in the
former protocol to 78% in stencil computation, which
processes data whose capacity is four times larger than the
local memory capacity.

Keywords— out-of-core; remote memory; paging;
swap; protocol; page swap; large memory;

I. INTRODUCTION

There is an increasing demand for the use of large
capacity memory for large-scale scientific and
engineering computations; however, there are limitations
to the main memory size that can be loaded into a single
computer owing to hardware limitations and power
consumption. The most common technique to resolve
this is using distributed memories over nodes in a cluster
by converting existing programs to MPI (Message
Passing Interface) programs. The MPI is widely used to
process large-scale data, although it is not always
possible to convert the original programs to MPI
programs, which are parallel processing programs based
on the distributed memory model. In some cases,
algorithms, libraries, and programs were originally
designed under shared memory model, and it is very
difficult to convert them to MPI programs. In other cases,
program conversion is possible but its development cost

is too high, and it takes to a long time for users to accept
such programs.

The remote memory paging provided by DLM [1] is
an effective option for solving this issue. The DLM
provides a virtual large memory by remote memory
paging using distributed memories in multiple computers
connected to a high-speed network. The DLM supports
multi-thread programs [2] written in OpenMP and
pthread. By using the DLM, it is possible to run multi-
thread programs for large-scale problems on a
computation node whose main memory capacity is
smaller than the problem data size.

Fig. 1 shows an overview of the DLM system. The
system consists of one computation node and several
memory server nodes. A user program runs on the
computation node, and memory server nodes provide
their memory to the user program. Users can allocate data
size that is larger than the local memory capacity using
the dlm_alloc() function. The function automatically
allocates data area in remote memories in memory
servers if the remaining local memory capacity is not
sufficient for data. In the computation node, a DLM
system thread called communication thread (com-thread)
is created when a user program calls the dlm_startup()
function. The com-thread is responsible for
communication between a computation node and
memory nodes and manages page requests from user
threads in a request queue.

When one of the threads in a user program accesses
data which is not in the local memory in the computation
node but in a remote memory node, segv signal is

Fig 1 DLM Structure

DLM
com-

thread

DLM
system

Computation Node

Application Process

Memory Node
1 Memory Node

Process

Memory Node m
Memory Node

Process

Page
swapping

.

.

.

.

.

.

User Program

thread-k

thread-n

thread-1

:
:

:
:

Page
swapping

QUEUE

978-1-5386-0700-8/17/$31.00 ©2017 IEEE

generated. In a segv handler, the user thread puts a page
request into the request queue and waits for the page
fetch from a memory node. The com-thread extracts this
page request from the queue, identifies the memory node
that has the requested page, and sends out a page request
to the memory node. Then, the com-thread gets the page
from the memory node, and sends back another page in
the computation node to the memory node as a swap-out
page. Next, it temporarily suspends all other user threads.
After copying the sent page to the appropriate user
address space, it restarts all user threads. The page
swapping in the DLM is performed in a unit of the DLM
page size that can be defined by users. The user address
space of a user program is managed by the DLM page
table. Each page table entry contains memory nodes that
possess the page.

A page swap protocol and its implementation are
significant factors in the performance of remote memory
paging systems. The current version of the DLM has a
bottle-neck in efficient page swapping because all
communication and page swap managements between
memory servers and a local computation node are
allocated to one system thread—the com-thread. This
paper proposes two new page swap protocols and
implementations by introducing another new system
thread to alleviate this situation. The first one introduces
the receiver thread, while the second one introduces the
page swap thread. They are evaluated by a micro-
benchmark, Stream benchmark, and a 7-point stencil
computation program. As a result, the second protocols
improve performance degradation for all the programs
above. The paper also clarifies the problem in the first
protocol.

II. BACKGROUND AND RELATED WORKS

The DLM provides a large capacity of virtual
memory using distributed memories on multiple nodes;
however, it does not support distributed parallel
processing using CPUs on multiple nodes, unlike in MPI
parallel programs. It makes it easier to port multi-thread
programs and algorithms designed on a shared memory
model. In the DLM, multiple nodes in a cluster are
regarded as memory resource not as CPU resource.
Program execution on a single node using remote
memory has a demerit in terms of the execution time,
which takes longer than using only local memory.
However, it gives us a merit in terms of seamless and
easy porting from newly designed algorithms and
programs examined using small local memory to those
using the DLM to confirm their effectiveness in a
realistic large-scale problem. The DLM is for users who
prefer a longer execution time using remote memory to
converting their programs to MPI programs while paying
significant costs.

The systems based on the partitioned global address
space (PGAS) model [6–10] also realize a large address
space using distributed memories such as the DLM.
Although PGAS systems provide a global view of shared
data, most these systems have limits in accessible areas

of shared data on remote nodes. Typically, only sleeve
areas in stencil computation are accessible by only
neighboring nodes. An underlying node-communication
scheme in many PGAS systems employ one-sided
communications, such as GET/PUT, in GASNET [11],
and MPI, where it is necessary to pre-register accessible
data areas for communication. Moreover, APIs
implemented in PGAS systems are very different from
those in OpenMP and pthreads. In contrast, the DLM has
no limit in accessing remote data and provides almost the
same APIs as those in shared memory model programs.

 Another example, which realizes global address
space using multiple nodes, is software-based distributed
shared memory systems (SDSM) [12–16] that provide
not only a global view of shared data but also full
accessibility to global data in remote nodes. However,
parallel processing with full accessibility to global data
on multiple nodes requires some relaxed memory
consistency models by performance reasons, it makes
SDSM programs different from programs based on a
shared memory model. Besides SDSM, remote memory
accessing systems [17, 18] that are similar to the DLM
were proposed; although such systems, except ArgoDSM
[15], employ obsolete implementation such as socket-
based communication on Ethernet, and do not support
multi thread execution.

 In addition to these systems, there are several high-
end systems supporting single address space. The
ScaleMP [19] unifies conventional Linux servers with
specialized software configuration to a single address
space system. The recently announced “The machine” by
HPE [20, 21] targets big-data processing. It is expected
to provide 160 TiB address space with state-of-the-art
memory devices. However, such expensive systems are
only acceptable to limited users. The DLM is widely
available to realize a large virtual memory at low cost for
general servers without special memory devices or large-
capacity NVMe flash SSDs.

The page swap protocols in this paper focus on how
to efficiently implement page swap communication
among multiple threads that are dynamically created and
terminated in user program execution. The investigation
of page replacement policies in the DLM is out of the
scope of this study, but was carried out in our earlier
study [3]. All experiments in this paper use a basic
CLOCK-like replacement policy. Recent MPI
implementations support a higher MPI thread support
level—MULTIPLE; however, it is well known that MPI
performance with MULTIPLE support level is degraded
compared with the default support level, FUNNELED or
SERIALIZED. Thus, increasing the number of DLM
system threads can possibly degrade the performance of
MPI communication and increase the overhead of mutual
exclusion among system threads.

III. SWAPPING PROTOCOL INTRODUCING RECEIVER

THREAD

A. Receiver thread

In the current DLM shown in Fig. 1, all page requests
generated by multiple user threads are processed by only
one thread, the com-thread, in a step-by-step manner.
The com-thread sends a page-request message to a
memory node, receives requested page from the memory
node (swap in), copies page to user data area, and sends
back one of the other local page (swap out) sequentially
for each page request generated by many user threads. It
is considered as the biggest performance bottleneck in
page swapping. To solve this problem, another system
thread called the receive-thread (recv-thread) and another
request queue called the external-request-queue are
introduced as shown in Fig. 2. The recv-thread is
responsible for receiving pages sent from memory nodes.
Other procedures in page swapping, i.e., send page
request, page copy to user data, and swap out, are still
managed by the com-thread. After the recv-thread
receives a page from a memory server, it inserts a page-
apply request in the external-queue. The com-thread
processes both requests in the external-request-
queuewhere the recv-thread inserts the request, and the
internal-request-queue where user threads insert requests.
Introducing the recv-thread allows the computation node
to simultaneously send requests to each memory node
and receive data from memory nodes, which decreases
the overhead incurred for page swapping. The next
section describes a protocol called the R58, which we
used in this implementation.

B. Swap Protocol R58

Swap Protocol R58 which incorporates the receiver
thread is detailed below. The unrevised DLM is referred
to as Swap Protocol R3.

1) When a user thread generates segv signal, the
thread inserts a page request to the internal-
request-queue in the segv signal handler.

2) The com-thread checks the internal-request-
queue and sends a page request to the memory
node who has the requested page.

3) The memory node processes the page request
and sends the page to the computation node.

4) The recv-thread receives the page from the
memory node in the page receive-buffer and put
a page-apply request into the external-request-
queue.

5) The com-thread extracts the page-apply request
from the external-request-queue, temporarily
suspends all user threads, and copies the page
to the user data area.

6) The com-thread sends one page in the
computation node to a memory node as a swap-
out page

7) The com-thread then restarts the user threads.

C. Micro benchmark Performance Evaluation of
Protocol R58

We created a micro benchmark like the one in Fig. 3
to evaluate the performance of swap protocol R58 which
incorporates the recv-thread. The micro benchmark
sets aside 2GB array within the DLM data area, accesses
the array in units of page sizes after it initializes all of the
elements of the array with element numbers, and checks
to see if the figures are properly initialized. That is to say,

Fig 3 Micro Benchmark

#define ENUM ((unsigned long int) (1L<<28))

int main(int argc, char *argv[]){

dlm_startup(&argc, &argv);

array = (unsigned long int *) dlm_alloc(

sizeof(unsigned long int) * ENUM); //2GB alloc

#pragma omp parallel for

for (i = 0; i < ENUM; i++) array[i] = i;

for(j = 0; j < 3; j++)

#pragma omp parallel for

for (i = 0; i < ENUM; i+=(1L<<17)) //data access per 1MB

if (array[i] != i) return 1;

dlm_shutdown();

return 0;

}

TABLE I ENVIRONMENT I

CPU Intel® Xeon® CPU E5-2687W 0 @ 3.10GHz
2CPU × 8core/node

Memory 64GB/node

Cache L2 256KiB
L3 20MiB

Network Infiniband FDR

OS CentOS 7.1.1503 (Core) Linux 3.19.5

Compiler gcc version 4.8.3

MPILib MVAPICH2 version 2.0.1

Fig 2 DLM structure which includes the Receiver thread

DLM
com-thread

DLM system

Computation Node

Application Process

Memory Node 1

Memory Node
Process

Memory Node m

Memory Node
Process

Page
request

.

.

.

.

.

.

User Program

thread-k

thread-n

thread-1

:
:

:
:

Page
swapping

DLM
recv-thread

QUEUE

QUEUE

in addition to continuing contiguous sequential writing
using multiple threads, the micro benchmark conducts
non-contiguous readings of the DLM page units. The
latter-half of reading is a particularly grueling test—a
vast amount of page requests is sent out via multiple
threads.

The operation experiment environment is shown in
TABLE I. The computation node’s DLM data area was
set at 800 MiB, the memory node’s DLM data area were
set at 6000 MiB, and 1 memory node was used and
initialized with a page size of 1MiB.

The results of the experiment are shown in Fig. 4. The
right bar shows the execution time for R3 and the left bar
shows the execution time for R58. The x-axis shows the
number of threads used for the computation and the y-
axis shows the execution time.

After introducing the R58 swap protocol, the
execution time for 1 thread increased approximately 2.75
times more when compared to the R3 execution time. In
order to identify the places significantly extending the
execution time, we set the 5 following measurement
points. We sought out the averages for each measurement
point for all page requests occurring within the program.

1) From right after a segv signal occurs to the
point where a com-thread calls upon the
internal-request-queue (A1-A2)

2) From the point where the com-thread requests
a page up to the point where the recv-thread
gets the page (A2-A3)

3) From the point where the page is received and
put into the external-request-queue up to the
point where the com-thread is called upon (A3-
A4)

4) From the point where the com-thread sends out
the swapped page up to the point where threads
are restarted (A4-A5)

5) From the point where the threads restart up to
the point where all the page swaps are
completed

Fig. 5 is a graph that captures the execution time for
each measurement point under the R58 Swap Protocol
for each initialized thread. The x-axis shows the number
of threads used for computation and the y-axis shows the
execution time.

Under the R58 Swap Protocol, as depicted in this
graph, a page was received from memory node in 3) after
it is put into the external-request-queue, the time it takes
for the page to be called upon by the com-thread for just
1 thread was 7% of the execution time, but when 12
threads were used they occupied approximately 80% of
the execution time. Furthermore, the time up the point
from where the 1) com-thread extracted a request from
the internal request queue increased as the number of
threads increased. This phenomenon occurred because
under the R58 Swap Protocol the extraction of requests
from the internal-request-queue and the external-request-
queue occur in tandem out of a principle of fairness, so it
is difficult to say that there is efficiency in the process
when there is bias in the number of request for both
queues. In order to address this issue, we tested out
several revisions to the queue extraction scheduling.
However, we realized that effectively adapting the
process to a dynamically fluctuating number of page
requests and a fluctuating number allocation requests for
pages being received would be difficult. Therefore,
improving the efficiency of the R58 Swap Protocol—
leaving the overall control of the DLM to com-thread and
creating thread to only receive requests—would be a
challenge.

IV. PROTOCOL USING PAGE-SWAPPING RECV-
THREAD

A. Swap Protocol R77

The results of the performance evaluation experiment
which utilized micro benchmarks from the R58 Swap
Protocol showed us that having a recv-thread receive
pages, and putting a page allocation request into the
external-request-queue after having the com-thread
check the external-request-queue and process the request
in particular took a fair amount of time. So, we

Fig 4 Execution time for R58 and R3’s micro benchmarks

94,011

65,726

53,388
48,831

28,399

37,491
29,143

22,258

0

20,000

40,000

60,000

80,000

100,000

1 4 8 12

M
ac

hi
ne

 C
lo

ck
 (

M
)

Number of Threads

Micro Benchmark
R3(base) vs R58(revised1)

Protocol R58 Protocol R3

Fig 5 Execution time for each measurement point under R58

0

10

20

30

40

50

60

70

1 4 8 12

M
ac

hi
ne

 C
lo

ck
 (

M
)

Number of Threads

Page swap protocol R58, Time components
(ave. one memory server)

RestartThread (A5-A6) Busy-loop
PageApply(Buf copy) SwapOut (A4-A5)
RecvQ PickUp (A3-A4)
Page Recv in Buf (A2-A3)
CalQ PickUP（A1-A2)

constructed the R77 Swap Protocol to move the DLM
page swapping process from the com-thread to the recv-
thread. The steps for the R77 Swap Protocol are written
below.

1) When a user thread generates segv signal, the
thread inserts a page request to the internal-
request-queue in the segv signal handler.

2) The com-thread checks the internal-request-
queue and sends a page request to the memory
node who has the requested page.

3) The memory node processes the page request and
sends a page to the computation node.

4) The recv-thread temporarily suspends user
threads and directly receives a page to the user
data area

5) The recv-thread checks the page table and sends
one page held within the computation node to a
memory node as a swap-out page

6) The recv-thread restarts the user thread

The special characteristic of the R77 Swap Protocol is
that when the recv-thread receives a page, the page does
not go through a buffer—it is directly received by the
memory and the recv-thread executes the page swapping.
Therefore, this protocol is able to swap pages without
processing the external-request-queue. Thus far, com-
thread could only access data DLM’s internal data;
however, under the R77 Swap Protocol, recv-thread
could access the data as well. As a result, we also
installed an exclusive control structure for internal data.

B. Micro benchmark Performance Evaluation of the
R77 Protocol

We conducted an evaluation experiment using the
micro benchmarks utilized by the R58 Swap Protocol to
check R77 Swap Protocol’s performance. To compare
R77 with R58, we set the 4 following measurement
points and sought out the average for each measurement
point.

1) From right after a user thread causes a segv
occurs to the point where com-thread calls upon a
request from the internal-request-queue (A1-A2)

2) From the point where the com-thread sends out
a page request to the point where recv-thread
receives a page (A2-A3)

3) From the point where the recv-thread suspends
user threads, receives a page, sends a swapped-out
page to the memory node up to the point where the
recv-thread restarts the user threads (A4-A5)

4) From the point where the user threads are
restarted up to the point where page swapping is
completed (A5-A6)

Fig. 6 shows the performances of both R77 and R3.
The y-axis shows the execution time and the x-axis
shows the number of slides used for computation. When

compared with R3, R77 has an execution time of 1.25
times faster for 1 thread and R77 achieved approximately
a 1.3 times faster for 12 threads. When compared with
R58, R77 was able to run at 1/4 of the total execution
time for one the thread and 1/3 of the total time for
initializing 12 threads.

Fig. 7 is a graph of execution time during each
measurement point for each implemented thread in
regard to R77. The x-axis shows the number of threads
used for calculation and the y-axis shows each time
component. This graph shows that the under R77 the wait
time—80% of which was occupied by the internal and

Fig 6 Execution time for R77 and R3’s micro benchmarks

21,942 21,505
16,182

16,876

28,399

37,491
29,143

22,258

0

20,000

40,000

60,000

80,000

100,000

1 4 8 12

M
ac

hi
ne

 C
lo

ck
 (

M
)

Number of Threads

Micro Benchmark
R3(base) vs R77(revised2)

Protocol R77 Protocol R3

Fig 7 Execution time for each measurement point under R77

0

10

20

30

40

50

60

70

1 4 8 12

M
ac

hi
ne

 C
lo

ck
 (

M
)

Number of Threads

Page swap protocol R77, Time component
(ave. one memory server)

RestartThread (A5-A6) SIGWAIT

PageRecv(Apply)-SwapOut (A4-A5)

PageHeaderRecv (A2-A3)

CalQ PickUP（A1-A2)

TABLE II ENVIRONMENT II

CPU Intel® Xeon® CPU E5-2687W v3 @ 3.10GHz
2CPU × 10core/node

Memory 128GB/node

Cache L2 256KiB
L3 25MiB

Network Infiniband FDR

OS CentOS 7.1.1503 (Core) Linux 3.19.5

Compiler gcc version 4.8.3

MPILib MVAPICH2 version 2.0.1

external-request-queues using the R58 protocol (A3-A4
of Fig 5—has disappeared. However, 2) has taken more
time. Under protocol R77, the fact that the recv-thread
continues to swap pages for each memory node is
efficient, but the fact the recv-thread sends and receives
pages required for 1 page swap, there is a performance
bottleneck. In a case where multiple memory nodes exist,
even if other pages are already sent to the memory node,
the nodes are not able to process them right away.

V. PERFORMANCE EVALUATION USING

APPLICATIONS

In section IV, we investigated the effect of the revised
protocol on actual application programs. We utilized the

7-point stencil computation that used temporal blocking
[4] and Stream [5] for this experiment. TABLE I was
used in Stream and TABLE II was used in the stencil
computation in relation to operating environment.

A. 7-Point Stencil Computation that Utilizes Temporal
Blocking

The 7-point stencil computation is one of the most
basic grid computations and computes with 1 point of
data that renewed and 6 points of data that adjoin that
point. The 7-point computation renews all the points of
data and repeats these over a multiple time steps. As
shown in Fig. 8, the stencil computation holds two blocks

that show the amount stored in computation nodes, and
stores buffers in the computation node and memory
nodes.

In this experiment, we executed a 7-point stencil
computation that used both space blocking and temporal
blocking. The problem size ranged from 64GiB to 512
GiB and we measured them using 16 threads. The
computation node’s DLM data area was set at 120 GiB,
the DLM data area for the memory nodes was set at 120
GiB, and the problem size ranged from 64 GiB to 256
GiB for 3 memory nodes. The 512 GiB problem size used
5 memory nodes. Measurements were carried out with a
1 MiB page size.

Fig. 9 is a graph depicting the relationship between the
problem size and Effective Mflops/s for the 7-point
stencil computation which introduced both the R58 and
R77 Swap Protocols. The x-axis shows the problem size
and the Y-axis is Effective Mflops/s.

All data is held within the computation node at the 64
GiB problem size so there is no difference in
performance. All data is not contained within the
computation node for computations with problem sizes
128 GiB or larger. With this computation, R77 has
between 1.3 to 1.5 times more Effective Mflops/s when
compared with R58. Under the R58 protocol,
performance decreases as the problem size increases.
When comparing R58 at 64 GiB problem size versus 512
GiB problem size, only approximately 54% of the
performance is achieved at the 512 GiB problem size.
However, when comparing the 64 GiB problem size with
the 512 GiB problem size under the R77 protocol, 78%
of the performance is achieved at the 512 GiB problem
size.

Fig. 10 is a graphic depicting the relationship between
the problem size and Effective Mflops/s for the 7-point
stencil computation run under the R3 and R77 Swap
Protocols. The x-axis shows the problem size and the Y-
axis is Effective Mflops/s.

Protocol R3’s performance is close to 1.4 times the
performance of R77 when run with a 64 GiB problem
size (remote memory not used). When run with a

Fig 8 Memory layout for Stencil computation

Buffer-0 (nx+2, ny+2, nz+2) Buffer-1 (nx+2, ny+2, nz+2)

spatial blocking
(ix, iy, iz)

Block-0
(bx+2*bt, by+2*bt, bz+2*bt)

Temporal blocking
proceeds bt steps

CPU Cache
iBlock

local
memory

Block

DLM
Buffer

Block-1
(bx+2*bt, by+2*bt, bz+2*bt)

Domain Size
iteration
nt steps

Fig 9 Effective Mflops/s for the 7-point stencil computation

under R58 and R3

15,218

11,891
12,435 11,958

14,662

9,222 8,759
8,013

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

64 128 256 512

E
ff

ec
ti

ve
-M

fl
op

/s

problem(GB)

Stencil (Temporal-block) ,16threads,
Protocol R58 vs. R77

Protocol R77

Protocol R58

Fig 10 Effective Mflops/s for the 7-point stencil computation

under R3 and R77

15,218

11,891
12,435 11,958

14,967

11,113 11,101
10,008

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

64 128 256 512

E
ff

ec
ti

ve
-M

fl
op

/s

problem(GB)

Stencil (Temporal-block) ,16threads,
Protocol R3 vs. R77

Protocol R77

Protocol R3

problem size of 128 GiB or greater that uses remote
memory, Protocol R77’s performance greatly exceeds
R3’s performance. When run with a problem size of 512
GiB, Protocol R77 has approximately 1.2 times the
performance when compared with R3. Under Protocol
R3, performance decreased to 66% when comparing a
512 GiB problem size with 64 GiB problem size (with
only local memory access available). Under these same
conditions, Protocol R77 was able to achieve 78% of
R3’s performance. This occurs because page requesting
and swapping is done independently by the com-thread
and the recv-thread. Thus, numerous memory nodes are
able to be processed simultaneously.

B. Stream Benchmark

Stream [5] is a benchmark for investigating memory
access bandwidths. We allocated 3 arrays—that are used
in the Stream computation—within the DLM data area
and modified those arrays to carry out the computation.
The DLM data area for the computation node was set at
56 GiB. The DLM data area for the memory nodes was
set at 120 GiB. There was 1 computation node, 4 memory
nodes, the page size was set at 8MiB and we used 14
threads for carry our measurements for the computation.
The total size for the 3 arrays was restricted to a range
between 48 to 512 GiB and measured. In actuality, the 48
GiB array did not use remote memory and only accessed
the local memory of the computation node.

Fig. 11 shows Stream results under the R77 protocol.
The y-axis shows bandwidth expressed in a logarithm
and the x-axis shows the total amount of secured arrays.
With 48 GiBs, where 3 arrays are stored in the DLM data
area, there is no difference in performance in relation to
processing type. However, with 64 GiB and greater, there
are great differences in terms of performance among the
3 processes excluding copy. When comparing the
performance of an array size of 64 GiB with an array size
of 48 GiB, performance drops to 59%. This is the greatest
performance loss to occur even when compared with the
decrease between Protocol R3 and Protocol R58. In
terms of performance, R77 is 500 MB/s higher than R58.

Fig. 12 shows Stream result under Protocol R58. The
copy performance achieved the same level of
performance as Protocol R3 when operating under an
array size of 48 GiB with only local access. However,
when compared to an array size of 48 GiB, an array size
of 64 GiB performed at 67%. When operating under
Protocol R3, the performance for an array size of 64 GiB
achieved 80% of what was achieved when only accessing
local memory (the performance of an array size of 48
GiB). Thus, we see that there is a major performance loss
in terms of memory node communication under Protocol
R58. The performance for an array size of 168 GiB or
greater maintained 600 MB/s.

Fig 11 Results of Stream implementation under R77

1

10

100

1,000

10,000

100,000

48 64 96 144 168 192 384 512

R
a
te
 (M

B
/s
)

Alloc Size (GB)

STREAM, 14threads
DLM(page8MB) , Protocol r77

Copy Scale
Add Triad

Fig 13 Results of Stream implementation under R77(2)

0

500

1,000

1,500

2,000

2,500

96 144 168 192 384 512

R
at

e
(M

B
/s

)

Alloc Size (GB)

STREAM, 14threads,
DLM(page8MB) , Protocol r77

Scale Add Triad

Fig 12 Results of Stream implementation under R58

1

10

100

1,000

10,000

100,000

48 64 96 144 168 192 384 512

R
at

e
(M

B
/s

)

Alloc Size (GB)

STREAM, 14threads,
DLM(page8MB), Protocol r58

Copy Scale

Add Triad

Fig 14 Results of Stream implementation under R3

0

500

1,000

1,500

2,000

2,500

96 144 168 192 384 512

R
at

e
(M

B
/s

)

Alloc Size (GB)

STREAM, 14threads,
DLM(page8MB), Protocol R3

Scale Add Triad

Fig. 13 is a graph showing the results of Stream with a
problem size of 96 GiB or greater under Protocol R77.
The y-axis shows the bandwidth and the x-axis shows the
problem size. The performance for an array size of 168
GiB or more was maintained at 1600 MB/s or greater.
We see that this has better communication efficiency that
the R3 and R58 Protocols referenced below. When
compared with the R3 Protocol, the R77 Protocol is
approximately 600 MB/s better in terms of performance
with an array size of 512 GiB.

Fig. 14 is a graph showing the results of Stream with a
problem size of 96 GiB or more under Protocol R3. A
performance of 1000 MB/s is maintained when Protocol
R3 is implemented with an array size of 168 GiB or more
which is 4 times the size of the DLM data area that holds
the computation node.

VI. CONCLUSION

In this research, we conducted comparative analysis
using Stream and a 7-point stencil computation which
utilized temporal blocking, and implemented and
designed 2 new communication protocols to increase the
communication efficiency of the DLM computation node
and the memory node. As a result, we realized that
Protocol R77, which approximately 1500 MB/s was
achievable as remote memory access bandwidth. In the
future, we plan on newly developing effective copy
operations (GET, PUT) etc. between the data fixed in the
local memory, the data extracted to the remote memory,
and the system used to gather and send multiple pages in
order to further improve efficiency.

REFERENCES
[1] Hiroko. Midorikawa, Kazuhiro Saito, Mitsuhisa Sato, Taisuke

Boku: "Using a Cluster as a Memory Resource: A Fast and Large
Virtual Memory on MPI", Proc. of IEEE cluster2009, 2009-09,
Page(s): 1-10

[2] Hiroko Midorikawa, Yuichiro Suzuki, and Masatoshi Iwaida:
"User-level Remote Memory Pagingfor Multithreaded
Applications", proc.of IEEE/ACM International Symp. on
Cluster, Cloud and the Grid ComputingCCGrid2013,pp.196-
197,2013-5(DOI10.1109/CCGrid.2013.63)

[3] Kazuhiro Saito, Hiroko Midorikawa, Munenori Kai,; "Page
Replacement Algorithm using Swap-in History for Remote
Memory Paging", proc. of IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, pp.533-538,
2009-8 (DOI: 10.1109/PACRIM.2009.5291315)

[4] Hiroko Midorikawa, Hideyuki Tan and Toshio Endo:"An
Evaluation of the Potential of Flash SSD as Large and Slow
Memory for Stencil Computations", Proceedings of the 2014
International Conference on High Performance Computing and
Simulation (IEEE HPCS2014) (ISBN 978-1-4799-5311-0),
pp.268-277, 2014-7 IEEE-HPCS2014

[5] John D. McCalpin :”STREAM: Sustainable Memory Bandwidth
inHigh Performance Computers”

http://www.cs.virginia.edu/stream/

[6] Jarek Nieplocha, Bruce Palmer, Vinod Tipparaju, Manojkumar
Krishnan, Harold Trease, and Edo Apra. "Advances,
Applications and Performance of the Global Arrays Shared
Memory Programming Toolkit", International Journal of High
Performance Computing Applications , (2006),20 (2): 203–231

[7] PNNL Global Arrays Toolkit http://hpc.pnl.gov/globalarrays/

[8] Jinpil Lee and M itsuhisa Sato. ``Implementation and
Performance Evaluation of XcalableMP: A Parallel
Programming Language for Distributed Memory Systems,'' The
39th international Conference on Parallel Processing Workshops
(ICPPW10), pp.413-420, San Diego, CA, Sep. 2010.

[9] W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, and K.
Warren ,"Introduction to UPC and Language
Specification" ,CCS-TR-99-157, IDA Center for Computing
Sciences, 1999.

[10] Chapman, Barbara, et al. "Introducing OpenSHMEM: SHMEM
for the PGAS community." Proceedings of the Fourth
Conference on Partitioned Global Address Space Programming
Model. ACM, 2010.

[11] D. Bonachea and J. Jeong GASNet: A Portable High-
Performance Communication Layer for Global Address-Space
Languages, CS258 Parallel Computer Architecture Project,
Spring 2002.

[12] Keheler, Pete; Cox, Alan; Dwarkadas, Sandhya; Zwaenepoel,
Willy . "Treadmarks: Distributed shared memory on standard
workstations and operating systems". USENIX Winter. 1994:
23–36

[13] Weiwu Hu,Weisong Shi,Zhimin Tang."JIAJIA: A software
DSM system based on a new cache coherence protocol",HPCN-
Europe 1999: High-Performance Computing and Networking pp
461-472,1999.

[14] Midorikawa,H.,Ohashi,U., Iizuka,H.: "The Design and
Implementation of User-Level Software Distributed Shared
Memory System: SMS - Implicit Binding Entry Consistency
Model -", Proceeding of IEEE Pacific Rim Conference on
Communications Computers and Signal Processing, pp.299-302,
2001-08.(DOI: 10.1109/PACRIM.2001.953582)

[15] ArgpDSM https://www.it.uu.se/research/project/argo

[16] Kaxiras, Stefanos, et al. "Turning centralized coherence and
distributed critical-section execution on their head: A new
approach for scalable distributed shared memory." Proceedings
of the 24th International Symposium on High-Performance
Parallel and Distributed Computing. ACM, 2015.

[17] Michael R. Hines, Jian Wang, and Kartik Gopalan,,”Distributed
Anemone: Transparent Low-Latency Access to Remote
Memory”, In Proc. of the International Conference on High
Performance Computing (HiPC) , pp.18-21,2006

[18] Pakin, Scott, and Greg Johnson. "Performance analysis of a user-
level memory server." Cluster Computing, 2007 IEEE
International Conference on. IEEE, 2007.

[19] ScaleMP ,http://www.scalemp.com/

[20] Chen, Fei; Gonzalez, Maria Teresa; Viswanathan,
Krishnamurthy; Cai, Qiong; Laffite, Hernan; Rivera, Janneth;
Mitchell, April; Singhal, Sharad ."Billion node graph inference:
iterative processing on The Machine" ,HPE-2016-
101 ,December 22, 2016

[21] The Machine HPE https://www.labs.hpe.com/the-machine

