
http://www.gsic.titech.ac.jp/sc18

TSUBAME Grand Challenge program
Adopted projects on TSUBAME3.0

We started this program since FY2011, and keep on carrying out
twice in each year.
Under this program, we have adopted total 39 fruitful projects, some
of which were awarded such as AMC Gordon Bell Prize in SC11.

This program is only chance to use all nodes of TSUBAME3.0 exclusively, be-
cause TSUBAME3.0 is shared by thousands of users. There are two categories:

 Category A The large scale application aims high peak-performance.
 All of TSUBAME3.0 nodes are available.
 Category B The large scale application aims scientifically meaningful results.

2018 2017 2016 2015 2014 2013 2012 2011 Total

A 1 2 2 3 3 1 4 7 23

B 2 1 1 4 4 2 0 2 16

Total 3 3 3 7 7 3 4 9 39

Table Number of Adopted Projects in the TSUBAME Grand-Challenge Program

TSUBAME Grand Chalenge Summary

Results
・ mSMS realized
 30TiB-address-
 space and 23TiB-
 global-arrays by
 using 180 nodes
 (9900 threads) in
 Tsubame3.0.
・ It achieved MPI
 comparable perf.

mSMS realizes a highly productive parallel programming environment.
・ Seamless virtual shared memory which is fully accessible by all threads in a cluster.
・ C-compatible address pointer-based programming for shared data is available for
 multi-node parallel processing.
・ Global shared data are transparently distributed over nodes in a cluster by C-based
 programming (MpC). Directive-based API (SMS-Mint) is also available in conjunction
 with OpenMP and OpenACC for multi-core & multi-node computing.
・ Remote data preload API is available for sub-array-data prefetch before the
 computing of the sub-array to achieve higher performance in data-parallel comp.

・ High performance: mSMS incorporates dedicated sms-system-threads for efficient
 communication to achieve the comparable performance of MPI programs.

Key Features
Hiroko Midorikawa (Seikei University) midori@st.seikei.ac.jp

mSMS: A New DSM System for HPC

shared double A[NZ][NY][NX]::[NPROCS][1][1] (0, NPROCS); // Global 3D- Arrays, A and B, distributed
shared double B[NZ][NY][NX]::[NPROCS][1][1] (0, NPROCS); // in z-dimension to multiple nodes in a cluster
main()
{ double (*src)[NY][NX]; double (*dst)[NY][NX]; double (*tmp)[NY][NX]; // pointers to a global 3D-array

sms_startup(&argc, &argv); // mSMS is started up
: // A & B arrays Initialization

src = A; dst = B; // set pointers to A and B arrays
for (t = 0; t < NT; t++) { // time step loop

#pragma Mint parallel for // Node parallel processing in a cluster
#pragma omp parallel for // Thread parallel processing in one node
for (z =1; z < NZ-1; z++)
for (y = 1; y < NY-1; y++)

for (x = 1; x < NX-1; x++) { // 7-point Stencil Calculations
dst[z][y][x]=0.4*src[z][y][x]+
0.1*(src[z-1][y][x]+src[z+1][y][x]+src[z][y-1][x]+src[z][y+1][x]+src[z][y][x-1]+src[z][y][x+1]);

}
sms_sync_drop(); // Execution & memory consistency Sync. (Each node discards or reflects cached pages)
tmp = dst; dst = src; src = tmp; // switch A and B arrays (swap src & dst pointers)

} // time step loop end
sms_shutdown(); // mSMS is finalized

}
The mSMS program for 7-point stencil comp.

NZ

Thread-
parallelNode-

parallel

Thread-
parallel

:
:

NX
NY

Node-0
Node-1
Node-2
Node-3

Ex. of
NPROCS=4

Global 3D-

113 217 427 839
1656

3276

3658 4880

6436
8023

9007

113 217 427 839
1656

3276 3658
4880

6436

8023
9007

114 218 438
860

1669
3209

3565
4632

5890
6934

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

2 4 8 16 32 64 72 96 128 160 180

G
Fl

op
s

Num of nodes

MPI
SMS segv 16M-page
SMS preload

mSMS vs. MPI in Performance (GFlops)
Simple 27p stencil computation

Hybrid data and model parallelism

Second Order Optimization for Deep Learning

Rio Yokota, Kazuki Osawa, Hiroki Naganuma, Hiroyuki Otomo,
Mohamed Wahib, Alexandr Drozd, Yosuke Oyama, Yohei Tsuji,
Keita Yashima, Hitoshi Sato (Tokyo Institute of Technology)

Training ImageNet on 2048 GPUs

As deep neural networks increase in size
the amount of data and time to train
them become prohibit ively large to
handle on a single compute node. Dis-
tributed deep learning on thousands of
GPUs forces the batch stochastic de-
scent methods to operate in a regime
where the increasing batch size starts to
have detrimental effect on the conver-
gence and generalization. We investi-
gate the possibility of using second order
optimization methods with proper regu-
larization as an alternative to convention-
al stochastic gradient decent methods.

Second order optimization methods re-
quire the communication of the Hessian
matrix. The present method reduces the
communication significantly through Kro-
necker factorization and the use of re-
duce-scatter and allgather collectives to
swtich between data parallel and model
parallel execution. The optimal implemen-
tation of allreduce operations has the
same communication pattern, so the pres-
ent method simply inserts the computation
of the Hessian between the two collective
operations.

Projects in Fall 2017
Deep Learning for Fusion Simulation Using
the Fusion Recurrent Neural Network
 FRNN (Fusion Recurrent Neural Net) is the deep learning framework developed for fusion
energy applications. It is implementing a distributed data-parallel approach to train deep neural
networks (in particular, stacked LSTMs). With this approach, a replica of the model is kept on
each worker, processing different mini-batches of the training dataset in parallel. The model pa-
rameters from each worker are collected using MPI, and synchronized via parameter averaging
with learning rate adjusted after each epoch to improve convergence. This produces a global set
of parameters, which are then broadcasted to each model replica. The stochastic gradient de-
scent (SGD) method is used for large-scale optimization with parallelization via mini-batch training
to reduce communication costs. In FRNN, we integrate Keras (TensorFlow and Theano back-
ends) and MPI to enable training across multiple GPU nodes using high-speed interconnects.
 The starting phase of this proposed 2017 TSUBAME 3.0 Grand Challenge project will be to initi-
ate scaling studies on the powerful TSUBAME 3.0 supercomputer featuring thousands of Pascal
P-100 GPU’ s will begin with the goal of replicating the excellent FRNN scaling observed on
“Titan” as well as Pascal P-100 systems at NVIDIA and Princeton University. We look forward to

Fusion Simulation Using the Fusion Recurrent Neural Network

exploring challenges associated with en-
gaging the full capability of TSUBAME
3.0. In particular, since the FRNN soft-
ware uses the steepest gradient descent
(SGD) with mini-batch training to reduce
communication costs, it will be very inter-
esting to observe the behavior of this DL
software with scaling studies on TSUB-
AME 3.0 to examine if the convergence
rate saturates/decreases with increasing
mini-batch size to thousands of P-100
GPU’ s.

Realizing Extreme Large-Scale Matrix Computations with
 a Memory Management Library Utilizing Fast Flash SSDs
 The objective of our project is to achieve extremely high-speed and large-scale matrix computa-
tion on TSUBAME3.0. Here we focus on large scale Cholesky decomposition, which is an import-
ant kernel in solving semi-definite programming (SDP) problem. In order to support even larger
matrices than aggregated host memory capacity of available nodes, we harness large capacity of
NVMe SSDs, which is 8 times larger than DRAM capacity in TSUBAME3.0. This should be
achieved with less development effort; thus we have developed a global address space runtime li-
brary, named vGASNet. On vGASNet, the aggregated capacity of SSDs distributed among com-
pute nodes are virtually visible as a single address space. For high-performance computing, cach-
ing mechanism using DRAM is necessary. Moreover, for scalable data movement, it supports “co-
operative caching mechanism” to avoid bottleneck in access congestion. On top of vGASNet, we
also have implemented the parallel Cholesky decomposition algorithm. While it is based on data-

Global Address Space Model of vGASNet

driven execution and tile-based
dynamic scheduling to suppress
global synchronization, the im-
plementation is relatively simple
and clean owing to the global
address space view. Inside
each task, we use CUBLAS and
MAGMA library in order to har-
ness h igh per fo rmance o f
NVIDIA P100 GPUs. Taking this
co-design approach, we aim to
achieve peta-scale matrix com-
putation.

