
DLM: A Distributed Large Memory System using
Remote Memory Swapping over Cluster Nodes

Hiroko Midorikawa ����, Motoyoshi Kurokawa ��, Ryutaro Himeno �� , Mitsuhisa Sato ��

�� Department of Computer and Information Science, Seikei University
3-3-1 Kichijouji Kita-machi, Musashino-shi, Tokyo, 180-8633, Japan

� midori@st.seikei.ac.jp
�� Graduate School of Systems and Information Engineering, University of Tsukuba

Tennodai, Tsukuba, 305-8577, Ibaraki, Japan
�� Advanced Center for Computing and Communication, �� Research Program for Computational Science, RIKEN

2-1 Hirosawa, Wako-shi, Saitama, 352-0198, Japan

Abstract—Emerging 64bitOS’s supply a huge amount of mem-
ory address space that is essential for new applications using
very large data. It is expected that the memory in connected
nodes can be used to store swapped pages efficiently, especially
in a dedicated cluster which has a high-speed network such as
10GbE and Infiniband. In this paper, we propose the Distributed
Large Memory System (DLM), which provides very large virtual
memory by using remote memory distributed over the nodes
in a cluster. The performance of DLM programs using remote
memory is compared to ordinary programs using local memory.
The results of STREAM, NPB and Himeno benchmarks show
that the DLM achieves better performance than other remote
paging schemes using a block swap device to access remote
memory. In addition to performance, DLM offers the advantages
of easy availability and high portability, because it is a user-level
software without the need for special hardware. To obtain high
performance, the DLM can tune its parameters independently
from kernel swap parameters. We also found that DLM’s
independence of kernel swapping provides more stable behavior.

I. INTRODUCTION

Emerging 64bitOS’s can supply a huge amount of memory
address space that is essential for new applications using very
large data. Large memory space is beneficial in applications
such as databases and bioinformatics. In the current x86 64
architecture, up to 256 terabytes of address space is available.
However, in a conventional virtual memory system, a page
is swapped off or on a disk when the size of used memory
exceeds that of real memory.

Recently, the bandwidth of network devices has become
larger than that of hard disks. It is expected that the memory in
other nodes can be used to manage swapped pages efficiently,
especially in a dedicated cluster which has a high-speed
network such as 10GbE and Infiniband.

In this paper, we propose Distributed Large Memory System
(DLM), which enables users to make use of very large virtual
memory by using remote memory distributed over the nodes
in a cluster.

The DLM system outperforms ordinary kernel swap systems
using a local hard disk as the swap device. According to our
experiments [1], we found that DLM performance of a 10
Gbps Ethernet cluster is about ten times better than that of

a conventional kernel swap system, when it has 77 GB of
virtual memory and the remote data/local data size ratio is
15%. Even on 1 Gbps Ethernet clusters, DLM performance is
more than five times better than that of a conventional kernel
swap system when the remote/local data size ratio is 2 to 5.
Even though DLM performance depends on the remote/local
memory size ratio, it is never lower than the performance of
a conventional kernel swap system.

We also found the behavior of DLM is generally more stable
than that of a conventional kernel swapping system. With the
kernel swapping system, performance fluctuations for the same
program are 2% to 60%, even if a cluster was dedicated. In
contrast, the DLM performance fluctuations were less than
1%.

There are several related studies on using remote memory
over cluster nodes for swapping [2][3][4]. In most research,
a new block device driver is used to access remote memory
and to replace the traditional swap device, which is typically
a local hard disk. This scheme has the advantage of full
transparency to users even when using remote memory, but
several papers reported stability problems due to the lack of
local memory when the kernel swap daemon accessed remote
memory. Some studies were not very successful in obtaining
sufficient performance with specially designed NIC hardware,
protocols, and kernel modification.

The DLM system is a user-level software with no need
for any special hardware or kernel modification. It also op-
erates independently from the OS swap system. So, setting
DLM system parameters is completely separate from kernel
parameters, which in turn gains the highest performance of
the processors and network. In this paper, the performance
of application programs using remote memory on the DLM
system is compared to the performance of programs using
local memory in a 10 Gbps Ethernet cluster. Our contributions
are summarized as follows:

� Re-evaluation of the scheme using user-level software for
remote memory swapping instead of low-level schemes,
e.g., the block device driver scheme.

� Design of totally new software for large-data-use sequen-
tial programs by using recent thread technology.

978-1-4244-2640-9/08/$25.00 © 2008 IEEE
Accepted as a poster presentation

2008 IEEE International Conference on Cluster Computing268

� Demonstration of DLM performance, which is better than
that of other schemes in high-memory-access applications
using only conventional TCP on 10Gbps Ethernet.

� Development of DLM independence of the conventional
kernel swapping, thus providing more stable behavior
than that using the kernel swapping device.

� Use of a larger page size than 64 KB, which results in
better performance in application programs.

II. OVERVIEW OF DLM SYSTEM
The Distributed Large Memory System (DLM) is a system

which provides very large virtual memory by using remote
memory distributed over the nodes in a cluster.

A. Runtime System of DLM

The runtime system consists of one process on a local host
and one or more remote processes on memory server hosts,
which are automatically forked by DLM system initialization
after the user inputs a program execution command. Fig. 1
shows a DLM runtime system and some command examples.
The local process includes a calculation thread, cal thread,
which is the thread invoked by a user command, and a
communication thread, com thread, which is automatically
created during DLM system initialization. This system is
designed for a sequential program using large data, so user
program codes are executed only in a local host.

The user-specified large data, called DLM data, are allocated
not only in local host memory but also in remote memory on
memory server hosts when the amount of local host memory is
not sufficient for the DLM data. The com thread communicates
between the remote memory server processes when the local
cal thread requires DLM data that are partially or fully
allocated in remote host memory. Data swapping between local
and remote memory is done in units of DLM pagesize, which
is a multiple of the pagesize defined in the OS kernel.

The automatically forked remote processes and the local
com thread are finalized when cal thread code execution is
finished.

The DLM hosts file includes a list of the host names and
amount of memory size on each host available for the DLM
system. Fig.1 shows a user-defined DLM hosts file called
hostfile in this example. The hostfile includes a calculation
local host name, e.g., calhost, in the first line and multiple
memory server remote host names, e.g., memhost1, in the
following lines.

B. Application Interface for DLM Data

A DLM program, which is a C program for the DLM sys-
tem, is almost the same as an ordinary sequential C program,
except for the replacement of malloc() with dlm alloc() and
attaching of dlm to static data declaration statements. Fig. 2
shows the API for DLM data static declaration and dynamic
allocation in the DLM sample program for a matrix and a
vector multiplication. Only user-specified DLM data has a
chance to be placed in remote memory when the local memory
does not have sufficient space. Unspecified data are guaranteed
to be in local memory.

C. DLM Compiler and DLM Library

The compiler, DLM compiler, easily enables the use of
remote memory with ordinary C programs. The compiler
consists of two components: a DLM to C program translator,
and a general C compiler, e.g., gcc. In the first phase, a DLM
program is converted to a normal C program that includes
DLM library functions. In the second phase, gcc compiles the
translated C program and links it with the DLM library, libdlm,
to create an execution file. Fig.3 shows an example before and
after the first translation phase.

The DLM initialization function, dlm init(), forks memory
server processes in each remote host specified in DLM hostfile
and creates a communication thread in the local host. Then
it establishes sockets (TCP or UDP) and initializes a DLM
pagetable. The finalization function, dlm exit() waits for the
end of the local cal thread calculation and then finalizes
remote memory server processes and sockets.

The DLM system allocates DLM data dynamically in run
time, so the DLM compiler translates static DLM data decla-
rations to pointer-based dynamic dlm allocations and renames
all static DLM data array access expressions to pointer-based
access expressions, as shown in Fig. 3.

In other words, the DLM compiler automatically translates
a sequential user program to an implicitly parallel process-
ing program which consists of one local calculation process
executing user program code and multiple remote memory
server processes. DLM compiler provides a user-transparent
environment for using remote memory over cluster nodes.

III. IMPLEMENTATION OF DLM SYSTEM
A. DLM System Initialization and DLM Pagetable

DLM data are managed with DLM pages and a DLM
pagetable. Each entry of the DLM pagetable has a host ID

dlm
 dlm_alloc

calhost 32768 //32GiB
memhost1 65536 //64GiB
memhost2 32768 //32GiB
memhost3 16381 //16GiB

:

Cal Process

Cal
Thread

Com
Thread

Memserv Process
memhost2

Memserv Process
memhost1

Memserv Process

 :

memhost3

calhost

DLM hosts file : hostfile

Command Example:
 compile: dlmc user_prog.c -ldlm -o user_prog
 execute: user_prog user_args -- -n 4 –f hostfile

4 nodes

Fig. 1. DLM Runtime System, DLM hosts file and a command example

269

//DLM Program example : Matrix Vector Multiply
#include <stdio.h>
#define N 100000 //N:100K a: 80GB x::800KB
dlm double a[N][N], x[N]; //DLM static declare

main(int argc, char *argv[])
{ int i,j;
 double *y; // DLM dynamic alloc y:800KB
 y = (double *) dlm_alloc (sizeof(double) *N);

 for(i = 0; i < N; i++) // Initialize a
 for(j = 0; j <N; j++) a[i][j] = i;
 for(i = 0; i < N; i++) x[i] = i; // Initialize x
 for(i = 0; i < N; i++){ // multiply
 y[i]=0; // initialize y
 for(j = 0; j <N; j++) y[i] += a[i][j]*x[j];
 }
 return 0;
}

Fig. 2. The API for DLM data in a sample program

�

�

�

�

�

�

�

�
Compile command: dlmc sample.c -ldlm

int (*__dlm_sh_a); //Translate DLM data to pointer expression

int main(int argc, char *argv[])
{

int i;
dlm_init(argc, argv); // Memory server Process Remote Fork

 // Communication Thread Create, Initialize
if (MYPID == 0) { //Calculation thread at localhost node
__dlm_dim[0] = 1000;

__dlm_dim[1] = -1;
__dlm_div[0] = -1; // DLM data dynamic allocation
__dlm_sh_a = (int (*))dlm_mapalloc(__dlm_dim,

__dlm_div, sizeof(int),0, dlm_nproc);

for(i = 0; i < 1000; i++) __dlm_sh_a[i] = i;
for(i = 0; i < 1000; i++) printf("%d ", __dlm_sh_a[i]);

{ dlm_exit(); return 0; }

}
dlm_exit(); //exit memory server remote processes, finalize

}

#define MAX 1000 // sample.c DLM program
dlm int a[MAX]; // static declaration of DLM data

int main(int argc, char *argv[])
{

int i;
for(i = 0; i < MAX; i++) a[i] = i;
for(i = 0; i < MAX; i++) printf("%d ", a[i]);

return 0
}

Fig. 3. Before-After Translation example in DLM compiler

of where the page is allocated, the page top address and the
end address of the data allocation, etc. The DLM system ini-
tialization creates remote memory server processes, the local
com thread and sockets between them, and it allocates DLM
pagetable with sufficient page entries for the total amount of
memory size described in DLM hosts file. The DLM pagetable
itself is not swapped out to memory servers.

B. DLM Data Allocation and DLM Hosts file

When DLM data are allocated, the necessary number of
DLM pages is mapped in local memory first, up to the

specified memory size in the first line of DLM hosts file. If
local memory is not sufficient for mapping all DLM data,
the remaining data are mapped in remote memory of a remote
server host in the next line of the file. If the server host memory
for the current allocation is not sufficient, the remains of the
DLM data are allocated in the next line stating a memory
server in the file. In this way, DLM data are allocated in each
memory server host according to priority, determined by the
sequence of descriptions in DLM hosts file.

C. DLM Page Swapping

When a user program accesses an unmapped non-local DLM
data area, the SIGSEGV signal handler is invoked to retrieve a
required DLM page from the memory server which possesses
it. The handler also swaps a local DLM page and a remote
DLM page, if necessary. The selection policy of the swap-out
page is simplified to reduce the overhead for evaluating the
importance of pages. The current implementation adopts ”First
allocated page is first swap out” policy. It also can be expanded
to a more sophisticated policy with kernel page information.

The difference between kernel swap and DLM swap pro-
cessing is that the kernel swap causes file accesses on the swap
device, which is typically a local hard disk. The DLM system
unmaps a swap-out page from the local memory, sends it to
the remote host, gets the required remote memory page and
directly maps it to the local memory without file accesses.

The DLM system is independent from kernel swap process-
ing, so all parameters used in the system (e.g., page size) for
swapping, are separate from kernel parameters and can be set
with values that gain the highest performance according to the
processor and communication link characteristics.

D. Communication in the DLM System

The com thread in a local process communicates to both
the local cal thread and remote memory server processes,
and so it waits for two kinds of signals, the SIGIO from
the external process and the SIGUSR from the internal cal
thread. Conversely, each remote memory server process is a
dedicated process for a single client, the cal process. So, it
is implemented as a simple loop server process waiting for a
client request.

There are no communication links between remote pro-
cesses. So, when an error occurs in a remote process, it
informs the com thread in the cal process, and the com thread
broadcasts it to other remote processes and all processes are
finalized. In normal finalization, the com thread waits for the
end of the cal thread calculation and after that, it notifies the
normal end to remote processes, and all sockets are closed.

IV. DLM PERFORMANCE OF 10 GBPS ETHERNET
CLUSTER

A. Experimental Setting

In this study, the bandwidth of remote memory access in
a DLM system is measured and the performance of DLM
programs partially using remote memory is compared to con-
ventional programs using only local memory (the local/total

270

TABLE I
10GBPS ETHERNET CLUSTER (RIKEN CSLM)

Cluster HP DL585 G2 x 5 Nodes

Node CPU DualCore AMD Opteron(8220SE)
2.8GHz x 4 (8Cores)

Node Memory 64GiByte(67.1GB)

OS Linux kernel 2.6.9-42 x86_64
Compiler gcc version 3.4.6

Network 10GbE protocol (Myri-10G)
Switch Fujitsu XG1200(10GbE Switch)

Hard Disk
SAS 147GB 10krpm 2 , RAID1

Smart array 5i,�HP 431958-B21 (TransRate
300MBps, seektime 4(Ave)8(max)ms)

TABLE II
DLM PAGE SIZE VERSUS WRITE TIME WITH SWAP OVERHEAD

BETWEEN REMOTE MEMORY AND LOCAL MEMORY

Write Time(usec) Relative� Time�DLM Page
Size�KB� 1GbE 10GbE 1GbE 10GbE

4 311 103 1.00 1.00
8 369 116 1.18 1.12

16 437 171 1.40 1.65
32 559 182 1.80 1.76
64 885 245 2.84 2.36
128 1505 395 4.83 3.81
256 3179 726 10.21 6.99
512 7571 1461 24.31 14.06

1024 16495 3106 52.96 29.89

data size ratio is 100%). Table I shows the cluster used in this
experiment. In this environment, the DLM system uses TCP
over Myri-10G [6]. The performance of TCP on Myri-10G is
comparable or better than that of UDP on Myri-10G. It should
be noted here that all measured applications runs sequentially
in one calhost and other nodes serve as memhosts.

B. Basic Performance of Micro Benchmarks

1) DLM Pagesize and Overhead of Remote Memory Swap:
To investigate the influence of DLM page size on swap
overhead, one write time accompanied by one page swapping
is measured. Table II shows the integer write time for each
DLM pagesize both on 1 Gbps and 10 Gbps Ethernet clusters.
The table shows that the values for a page size of 1024 KB
are 53 and 30 times slower than the values for a page of 4
KB in each case. These are not small values, so it means that
a larger page size is not always good for all, even though a
larger page size usually gives a data preload effect, depending
on the data access locality of each application.

2) STREAM Benchmark measuring Remote Memory Band-
width: The remote memory access bandwidth in the DLM sys-
tem is measured by using STREAM benchmarks. STREAM
[5] is a set of multiple kernel operations, that is, sequential
accesses over array data with simple arithmetic, as shown in
Table III. STREAM outputs sustainable memory bandwidth

TABLE III
STREAM BENCH MARK

 Kernel Code
COPY a(i) = b(i)
SCALE a(i) = q*b(i)
ADD a(i) = b(i) + c(i) STREAM

TRIAD a(i) = b(i) + q*c(i)

STREAM malloc memory

0

2000

4000

6000

8000

10000

12000

24
0K

48
0K

96
0K 1.2

M
1.4

4M
2.40M 48M

240
M

2.4G
19.2

G
24G 48G

Total Array Memory Size (Bytes) (Array Size :10K-2G)

M
em

or
y

B
an

dw
id

th
 M

B
/s

ec Copy
Scale
Add
Triad

Fig. 4. Local Memory Bandwidth (STREAM) Array Size 10K-2G Local
memory/Total memory Size Ratio 100%

at the application level for each kernel after iterative mea-
surements. It is important for STREAM to choose an array
size which is sufficiently large to ignore the cache effect. So,
we first measured local memory bandwidth with the various
array sizes shown in Fig. 4. Although STREAM originally
uses static array declaration, it was modified to use dynamic
data allocation because of the limitation of the static data
section size in gcc. The result shows that an array size larger
than 2.4 MB is acceptable for measurement. We chose 100
M elements and a 2.4 GB array size for comparison between
the remote and local memory bandwidth. The local memory
bandwidth of this size is around 3 GB/s, shown in Table IV.
Static data allocation obtains a slightly better performance. To
obtain more objective results, the local memory bandwidth of
dynamic allocation is used for comparison with remote mem-
ory bandwidth in DLM, because the DLM System allocates
data dynamically.

The measured remote memory bandwidth is shown in Fig.
5. The larger page size shows a better performance. The best
value, 380 MB/s for page size 1024 KB, is much better
than the bandwidth in the Remote Direct Memory Access
(RDMA) based block device scheme [2]. This value is also
comparable to 375 MB/s, which is a theoretical maximum
IO performance for typical storages, SATA300 and SAS. The
actual performance of storages is more degraded by additional

TABLE IV
LOCAL MEMORY BANDWIDTH(MB/S) ARRAY SIZE 100M

STREAM Array� Size:100M� 2.4GByte
� COPY SCALE ADD TRIAD
static 2976 2804 2926 3153
malloc 2718 2694 2767 2925

271

0
50

100
150
200
250
300
350
400

1024 512 256 128 64 32 16 8 4
 DLM Page Size (KB)

Ra
te

 M
By

te
/s

ec
Copy
Scale
Add
Triad

Fig. 5. Remote Memory Bandwidth (STREAM) Array Size 100M(2,4GB)
Local memory/Total memory Size Ratio 8%

0

10

20

30

40

50

60

70

100 96 87 78 69 52 43 35 26 17 8
Local Memory Data/Total Data Ratio(%)

Pe
rf

or
m

an
ce

 D
eg

ra
da

tio
n 4K

8K
16K
32K
64K
128K
256K
512K
1024K

Fig. 6. STREAM COPY Performance Degradation, Array Size 100M(2,4GB)

hardware overhead, e.g., the seek time, and software overhead,
especially in random accesses.

Fig. 6 and 7 show the relative execution times of COPY
and TRIAD, respectively, to the execution time using only
local memory for various local/total data size ratios and DLM
pagesizes. In COPY, only two arrays among three are used,
as shown in Table III, so there is no degradation when there
is more than 60% - 70% of data is in local memory. On the
other hand, TRIAD degradation begins in the lower local/total
data size ratio because it uses three arrays in the kernel. When
using a small page size, 4 KB - 16 KB, all kernels in STREAM
and STREAM2 showed 50-70 times degraded performance
compared to that of the local memory execution. Using a larger
page size than 64 KB decreases degradation by 10 times, even
if only 8% of the total data is in local memory.

C. Performance of Application Benchmark

The performance in more real field applications than the
above micro benchmark is measured with the NAS parallel
benchmark (NPB) [7] and Himeno benchmark [9].

1) NAS Parallel Benchmark: The C sequential programs,
FT, IS and CG in class B from NPB2.3-omni-C [8], are used
for this evaluation. Fig.8 - Fig.10 show the relative execution
time to the execution time using only local memory for various
DLM pagesizes and size ratios of local/total data.

The DLM performance in these programs depends on data

0

10

20

30

40

50

60

70

100 96 87 78 69 52 43 35 26 17 8
Local Memory Data/Total Data Ratio (%)

Pe
rf

or
m

an
ce

 D
eg

ra
da

tio
n

4K
8K
16K
32K
64K
128K
256K
512K
1024K

Fig. 7. STREAM TRIAD Performance Degradation, Array Size
100M(2,4GB)

0
1
2
3
4
5
6
7
8
9

1024 512 256 128 64 32 16 4

DLM Page Size(KB)

Pe
rf

or
m

an
ce

 D
eg

ra
da

tio
n 41-42% LocalMemory

70-72% LocalMemory

Fig. 8. NPB FT.B Performance Degradation

access locality and (calculation/memory access) ratio, etc.
These three programs are known to be programs with a
higher memory load among NPB suites, but they also seem to
have more data access locality in comparison with the micro
benchmark used above. The performance degradation in these
NPB programs is 10 to 20 in the worst cases. This result
is relatively smaller than that in STREAM, where the worst
degradation is more than 70. The results show the performance
for a larger DLM pagesize is better even if the data access is
not limited to simple sequential access, as in STREAM.

FT.B is a 3-D FFT calculation for a 512x256x256 matrix,
which requires three 3-dimensional arrays of a complex num-
ber, 1.7 GB. Iterative calculation is performed for 3 different
directions of data accesses with discrete gaps, and causes the
biggest number of swaps among these programs.

IS.B is an integer sort which requires three integer arrays
of 2**25 elements, 384 MB in total. It is a relatively small
data size, but the performance changes linearly according to
the local/total data size ratio.

CG.B requires 14 different types and sizes of arrays, 510
MB in total. The DLM pagesize does not affect the perfor-
mance when the local/total data size ratio is larger than 30%.
Once the local memory becomes lower than approximately
100 MB, the performance drops drastically, as shown in Fig.
10. It is supposed that the working set of data access is near
100 MB. CG often uses an indirect access using an array of
indices for data array for nonsequential access. It requires two
accesses of memory to get data, so once the local memory

272

0
1
2
3
4
5
6
7
8

1024 512 256 128 64 32 16 8 4
DLM Page Size(KB)

Pe
rf

or
m

an
ce

 D
eg

ra
da

tio
n

73-77%LocalMemory
40-50%LocalMemory
16-20%LocalMemory

Fig. 9. NPB IS.B Performance Degradation

0
2
4
6
8

10
12
14
16
18
20

1024 512 256 128 64 32 16 8 4
DLM Page Size(KB)

Pe
rf

or
m

an
ce

 D
eg

ra
da

tio
n

66-67%LocalMemory
36-37%LocalMemory
16�25% LocalMemory

Fig. 10. NPB CG.B Performance Degradation

size ratio becomes low, the performance degradation becomes
large.

2) Himeno Benchmark: This benchmark measures the
speed of major loops for solving Poisson’s equation using
the Jacobi iteration method to evaluate the performance of
incompressible fluid analysis code [9]. It uses multiple loops of
iterations and is known as a program requiring heavy memory
access. A large size version, 257x257x513, 1.9 GB, is used.
It outputs the performance in MFLOPS. Fig. 11 shows the
relative performance degradation to the execution using only
local memory over various page sizes and local/total data size
ratios. The result shows the worst degradation is approximately
35 at a 4 KB page size and the best is 5 at a 1024 KB page
size when the local/total data size ratio is 10%.

This result means the Himeno benchmark has heavier mem-
ory access than the NPB programs used here and has lighter
access than the micro benchmark, STREAM. When using a
larger page size than 32 KB, the degradation is maintained
at lower than 10, even at the lowest local/total data size ratio.
The performance difference between 64 KB and 1024 KB page
sizes is small, so it means using a page size larger than 64 KB
is sufficient for good performance in the Himeno benchmark.

Our performance result in the Himeno benchmark is better
than other research results that use specially designed NIC
hardware for a 10 Gbps Ethernet and a device driver. The
Himeno benchmark contains a wide range of data accesses
that causes a higher number of swaps than the other programs,
qsort, LU or SP in NPB.

Our results show that much larger page sizes than the

HimenoBMT Large

0

5

10

15

20

25

30

35

40

100 86 82 65 54 43 32 21 10

Local Memory Data/Total Data Ratio(%)

Pe
rf

or
m

an
ce

 D
eg

ra
da

tio
n

4K
8K
16K
32K
64K
1024K

Fig. 11. Himeno Benchmark Performance Degradation

kernel page size, 4 KB, is more effective to obtain higher
performance, without special network hardware, protocols,
device drivers or kernel modification.

V. CONCLUSION
In this paper, we proposed the Distributed Large Memory

System (DLM) which enables us to make use of very large
virtual memory by using remote memory distributed over
nodes in a cluster.

The results show that DLM using only user-level software
achieves better performance than do other low-level remote
paging schemes, which typically use a block device for swap-
ping to access remote memory. The stable behavior and higher
performance of DLM benefit by DLM’s independence of the
conventional kernel swapping system. The DLM can tune its
parameters independently from the kernel swapping system
to obtain higher performance and does not suffer form the
unstable behavior of the current kernel swap daemon. It also
shows that larger page size is more effective to achieve higher
performance.

The advantages of DLM are not only shown in performance
but also in easy availability and high portability, because it is a
user-level software that needs no special hardware and kernel
modification.

REFERENCES

[1] H.Midorikawa, H.Koyama, M.Kurokawa, R.Himeno, ”The Design of
Distributed Large Memory System DLM and DLM Compiler”, IEICE
Technical Report. Computer systems, Vol.107,No.398, pp. 29-34, 2007
(In Japanese)

[2] S. Liang, R. Noronha, and D. K. Panda,, Swapping to Remote Memory
over InfiniBand: An Approach using a High Performance Network Block
Device, IEEE Cluster Computing, Sept. 2005

[3] Pavel Mache,　 Linux Network Block Device, (1997) [Online].
http://www.xss.co.at/linux/NBD/　 http://nbd.sourceforge.net/

[4] Tia Newhall et al.“ Nswap: A Network swapping Module for Linux
Clusters”, EuroPar03, 2003

[5] (2008) STREAM Benchmark web site [Online].
http://www.cs.virginia.edu/stream/ref.html

[6] (2008) Myri-10G, Myricom web site [Online]. http://www.myri.com/
[7] (2008) NPB　 (NAS Parallel Benchmarks) web site [Online].

http://www.nas.nasa.gov/Resources/Software/npb.html
[8] (2008) NPB2.3-omni-C web site [Online].

http://phase.hpcc.jp/Omni/benchmarks/NPB/index.html
[9] (2008) Himeno Benchmark web site [Online].

http://accc.riken.jp/HPC/HimenoBMT/index.html

273

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Mitsuhisa Sato
