
Meta Process Model
and its Portable Parallel Programming Interface MpC

Hiroko Midorikawa
Department of Information Sciences

Seikei University
3-3-1 Kichijouji kita-machi, Musashino-shi, Tokyo, 180-8633, Japan

midori@is.seikei.ac.jp

Abstract
This paper proposes a new portable parallel program-

ming interface MpC, Meta process C, for Meta Process
Model. The Meta Process Model is a parallel programming
padadigm based on a hierarchical shared memory model
and an explicit description of parallelism On these points,
this model is different from either the strict Shared Mem-
ory Model (SMM) or the Message Passing Model (MPM).
The Meta Process Model introduces shared data that can
be accessed by all processes in one Meta Process and dis-
tinguishes process-local and process-shared data explicitly
with a hierarchical data scope.

A programmer describes process interactions explic-
itly using shared data accesses and synchronizing opera-
tions, such as a barrier and a lock/unlock. So it enables us
to write a wide variety of parallel programs, not only SPMD
and data parallel applications written in OpenMP and HPF
but also asymmetric and asynchronous MPMD applications
written in MPI. The Meta Process Model provides us with
both flexible parallelism description of the MPM and good
program readability/writability of the SMM. Its target ma-
chines include clusters as well as shared memory parallel
machines. Some execution results of MpC programs on
clusters and shared memory machines are shown, and they
are compared with OpenMP and UPC programs. It also
proves good portability of MpC programs and MpC com-
pilers because they use user-level SDSM library, pthread
library and gcc, which are available for various OS’s and
architectures.

Key Word
Programming Model, Parallel Language, Cluster comput-
ing, SDSM

1 Introduction

The two most representative parallel programming
models are the message passing (MPM) and the shared
memory (SMM) models. In MPM, MPI has greatly con-
tributed to portability and popularization of parallel pro-
grams. On the other hand, the SMM has an advangtage in
easy extention from existing sequential programs. More-

over, it alleviates the difficulty of reading/writing paral-
lel programs, because it needs no bothersome statements
for message passing in the programs. In this background,
OpenMP was proposed as a standard API for the SMM,
and it showed its effectiveness in some shared memory
systems[1][2]. However, a typical SMM environment, such
as pthread and OpenMP, is not available to or not so efficient
for clusters. Clusters are important platforms for parallel
processing because of their good cost effectiveness.

Usual clusters have relatively low bandwidth commu-
nication links between computing nodes as compared with
their CPU performance. They are categorized into a dis-
tributed memory system.

Another effort to derive high performance from clus-
ters with the SMM instead of the MPM is the development
of software distributed shared memory systems (SDSMs),
such as TreadMarks[3], JIAJIA[4] and SMS[5]. These
systems use some type of the relaxed memory consis-
tency models [6] to reduce communication overhead be-
tween computing nodes. In SDSM programs, programmers
must describe the parallelism explicitly using shared data
access and synchronizing operations like a barrier and a
lock/unlock. This explicit parallelism description is simi-
lar as in pthread programming.

Using OpenMP on clusters, which means using the
SMM on a distributed memory system, usually causes more
performance degradation than using SDSMs directly[7]. It
is caused by the fact that the most of OpenMP implementa-
tion for clusters use a SDSM as an underlying system. With-
out special hardware support to access remote memory, it is
difficult to derive high performance on clusters compara-
ble to the performance on SMP machines and NUMA type
shared memory machines such as SGI origin.

The OpenMP is originally designed based on fork-
join parallel thread model for shared memory systems.
Since it is not for distributed memory systems, it places
much importance on easy extention from sequential pro-
grams. Its API tends to hide details of actual parallel ex-
ecutions and data layouts over distributed memory. So it
supports no distributed data mapping facilities to each clus-
ter node and causes implicit and redundant memory consis-

tency synchronizations to maintain a single shared memory
illusion on a distributed memory system.

To overcome such overhead, some dialects of
OpenMP add extended facilities to specify data mapping[8]
[9]. Others explore a hybrid model with OpenMP and
MPI[10][11]. Though, the more elaborated facilities are in-
corporated in the extended OpenMP, the more its simplicity
and integrity of SMM seems to be deteriorated. It seems
that system’s implicit processing, such as synchronizations
and data copying between local from/to shared data, and
user-specified explicit ones are complicatedly mixed, and
it makes programmers more confused. Strictly speaking,
these extended SMM API is not a SMM API any more.
Although it is ideal that the same SMM API can be avail-
able on any systems with high performance, independently
of underlying memory configurations, actually it is difficult
to achieve high performance on clusters unless program-
mers pay attention whether data are local or global, private
or shared. Currently, there is a limit to obtain high perfor-
mance using the pure SMM that deals all data in the same
way without data layout.

In these backgrounds, this paper proposes a new par-
allel programming interface MpC, Meta Process C, for an
API of Meta Process Model. The Meta Process Model [12]
is based on a hierarchical shared memory model and em-
ploys an explicit parallelism description paradigm. The mo-
tivation to the model is to improve the performance in real-
istic way with keeping a consistent SMM interface, instead
of a hybrid API of MPM and SMM like an MPI/OpenMP,
even on distributed memory systems.

Meta Process is a newly coined term that represents
a group of cooperative processes to achieve a single appli-
cation. Meta Process model introduces shared data that can
be accessed by all processes in a Meta Process and it distin-
guishes process-shared data from process-local one with a
hierarchical data scope. The reason why the execution en-
tity of the model is called a process, not a thread, is that the
processes in one Meta Process have separate address spaces
for process-internal data, global data, but they share an ad-
ditional address space for process-shared data. Shared data
are maintained by a relaxed memory consistency model.
Basically processes do not share resources, such as files and
memory, and threads share all resources. So we chose a
process model instead of thread model even if the model
implementation uses threads for actual execution.

A programmer describes process interactions explic-
itly using shared data accesses and synchronizing oper-
ations, such as a barrier and a lock/unlock. So it en-
ables us to write a wide variety of parallel programs, not
only SPMD and data parallel applications often found in
OpenMP and HPF programs, but also asymmetric and asyn-
chronous MPMD applications usually written in MPI. The
Meta Process Model provides us flexible parallelism de-
scription of the MPM. It also keeps good program readabil-
ity/writability of SMM, because it hides communication de-

Meta Process

P0

node0

P1 P2

node1 node2

Figure 1: Meta Process and its constituent processes

tails between computing nodes. The MpC programs have a
good portability. Its target machines include not only clus-
ters but also shared memory parallel machines. This is be-
cause the implementation of the Meta Process Model uses
only user-level software DSM library or pthread library. The
MpC compiler uses gcc which is widely available in various
machine architectures. This is a reason why MpC programs
and the compiler can be widely accepted and portable.

2 Meta Process Model

Usually, parallel processing on clusters requires the
cooperation of multiple processes on each computing node
as shown in Figure 1. The Meta Process model treats such
cooperative processes distributed over the nodes as one ex-
ecution entity, called Meta Process. Each process in Meta
Process is a traditional process, which is identified by the
node’s OS and possesses some resources. Although the
Meta Process is not identified by general OS’s, it is identi-
fied as a user’s single execution entity by some system soft-
ware, such as SDSMs. As far as a user is concerned, it is a
single application program execution entity on clusters. So
the model can be easily extended for shared memory paral-
lel computers. It is similar that the MPI is available both for
shared and distributed memory machines.

2.1 Single Shared Address Space for shared data

This model introduces two hierarchical execution en-
tities, process and Meta Process, and it also provides two
storage types of data, which are available in the each scope
level. The first type is local data in a process, the second
one is global data shared among the processes in a single
Meta Process. For newly introduced shared data, the same
address used in each process refers to the same shared data.
So users need no message passing statements in their pro-
grams. Runtime data scopes are shown in Figure 2. The
lifetime and the scope for process-local data are controlled
by the description of C programs, in accordance with a dec-
laration of automatic, global or static variables. Other pro-
cesses can’t access process-local data directly. Only shared
data, which newly defined in the model, are accessible from
any process in the Meta Process.

local

Process P1Process P0

Meta Process

global

local

shared

global

Figure 2: Shared variables and the hierarchical data scope
in execution time

2.2 Relaxed Memory Consistency

This model assumes that shared data are maintained
by a relaxed memory consistency model[6], often used in
SDSMs. The premise gives an advantage in performance
for distributed memory machines such as clusters and even
for NUMA, and no harm for shared memory machines.

2.3 Shared Data Layout

This model provides an API for associating shared
data with a process in the Meta Process. Specifying the most
closely related process that accesses the shared data fre-
quently enables to achieve good performance on distributed
memory systems. If such explicit association does not exist
in an application or a user has no knowledge of the appli-
cation nature, the association specifiers can be omitted. In
that case, an implementation of this model associates the
shared data to an arbitrary process depending on the imple-
mentation systemn’s policy. The association specifier is a
hint for the underlying implementation, like register used in
C language. For array data, flexible cyclic data allocations
to a sub group of processes are supported. They include
line, band, tile, and cube mapping, etc. A user can declare
shared data with suitable association specifiers for their ap-
plication. Both static declarations and dynamic shared data
allocations are possible.

2.4 Good Portability

This model is portable to both distributed memory
systems and shared memory systems. Typical SDSMs and
pthread have similar APIs, such as lock and unlock. Incor-
porating these similar APIs into the MpC API, it is possi-
ble to port MpC programs from a SDSM to other different
SDSM or from a shared memory system to a SDSM.

3 MpC Language

MpC is a portable parallel programming interface of
the Meta Process model for DSMs and shared memory sys-
tems. It is a parallel extension of ANSI C.

3.1 Shared Storage Class Specifier

In the MpC, shared is newly added to the storage class
specifier of ANSI C. The data prefixed with shared must be
declared outside of functions in at least one of the program
files that are linked into a single executable. The scope of
the shared data is the whole Meta Process, and the data are
visible and accessible from all processes in the Meta pro-
cess. Like global variables in C, an external reference to
shared data defined in other files also requires extern shared
or simply shared declaration. The scope hierarchy from ex-
ternal to internal at runtime is shared, global and local, in
order, as shown in Figure 2. If the same variable name is
used for different scope level data, the most internal vari-
able data are effective for that name. In our implementation
of MpC for clusters, shared data are allocated dynamically
when a Meta Process is started and deallocated at the time
of its exit. So the lifetime of shared data can be considered
to be the same as the static data in C.

The MpC treats pointers in the same way of origi-
nal C, where a storage type of the content referenced by a
pointer is not cared . It ignores whether the content pointed
by the pointer is shared or local. It only takes account of
data type specifiers. The MpC simplifies pointer expres-
sions. For example, only 2 expressions are allowed for inte-
ger pointers.

1. a local pointer variable which points to integer:
int *p1;

2. a shared pointer variable which points to integer:
shared int *p2;

3.2 Distributed Shared Data Mapping

To associate shared data with processes, the MpC sup-
ports data mapping specifiers. The mapping specifier con-
sists of two parts, divide information and owner informa-
tion. The mapping specifier follows shared prefixed vari-
able names, accompanied with ::. Using mapping specifiers,
users can inform an underlying implementation of hints to
map the shared data distributedly over processes. Typical
mapping examples for 2d-arrays and 3d-arrays are shown in
Figure 3. The MpC data mapping interface is more straight-
forward and flexible than one of UPC described in section
3.5.

3.3 MpC Constants

The MpC allows runtime constants called MpC con-
stants as well as ordinary constants to be used in distributed
shared data mapping specifiers and othre program codes.
The MpC constants include two constants, NPROCS and
MYPID. The NPROCS is the number of processes that con-
sist of a Meta Process in execution. The MYPID is a unique
id number of the each process in the Meta Process. The
value of MYPID is from 0 to NPROCS-1. The values of

0

1

3

2

N

devided into 4 horizontal blocks
a[M][N]::[4][](0,4)

devided into 4 vertical blocks
a[M][N]::[][4](0,4)

0 32M

N

1

devided into 4 tiles
a[M][N]::[2][2](0,4)

0

32

M

N

M

N

0 321 0 321

divided int N cyclic blocks
a[M][N]::[][N](0,4)

1

pid4

N

M
L

pid5
pid6

pid7

M

2

2

3

3 4

4 5

5

6

6 7

7 8

8 9

9

N

divided into 16 tiles for 8 procs
 a[M][N]::[4][4](2,8)

divided into 4 planes for 4 procs
 a[L][M][N]::[][4][](4,4)

Figure 3: Shared variable distributed mapping examples

the MpC constants can’t be determined in compile time, but
they are resolved and fixed when a Meta Process execution
starts.

3.4 MpC Standard Library Functions

The MpC has standard MpC library functions, such
as barrier, lock/unlock, condition signal/wait, Meta Pro-
cess initialize/finalize and shared data dynamic allocation,
shown in Table1. These standard function calls are trans-
lated into underlying runtime system’s library function
calls.

Figure 4 shows a MpC sample program that uses basic
MpC functions. It is a simple SPMD program. It has no
message passing statements.

3.5 UPC and MpC

One of the other related works is the UPC[13]. The
UPC is a language for the distributed shared memory model,
but its target is only SPMD programs as in OpenMP. It in-
corporates parallel statements and synchronizations into its
language level and supports two memory consistency mod-
els, strict/relaxed. It differs MpC in data mapping I/F and
pointers etc.

MpC Library Functions
Initialization
Termination

Error Termination
Barrier

Lock
Unlock

Condition signal
Cond. broadcast
Condition wait
Data allocation
Data allocation

mpc_init(int argc, char *argv)
mpc_exit(int value)
mpc_err(int value, char *msg)
mpc_barrier(int value)
mpc_lock(int lockid)
mpc_unlock(int lockid)
mpc_cond_signal(int condid)
mpc_cond_broadcast(int condid)
mpc_cond_wait(int condid, int lockid)
void *mpc_alloc(size)
void *mpc_alloc(char *declare)

Table 1: MpC Standard library functions

A shared prefix is also introduced in UPC but it is
implemented as the type qualifiers of ANSI C. As a result,
there are 4 kinds of integer pointers as follows.

1. a local pointer variable which points to local integer:
int *q1;

2. a local pointer variable which points to shared integer:
shared int *q2;

3. a shared pointer variable which points to local integer:
int *shared q3;

4. a shared pointer variable which points to shared inte-
ger:

shared int *shared q4;

However, it is considered that such pointer distinction
is not necessary for programmers in actual use and only
gives unnecessary complexity to a compiler and program-
mers. Dynamically content-changing pointers by casting
and multiple indirected pointers are actually impossible to
determined whether actual data are shared or not. More-
over, most of SDSMs support no mechanisms to improve
memory access performance using such information. So its
effectiveness seems to be limited in actual programs. It is
more natural to regard shared as one of the storage classes
instead of the data type specifier as in UPC.

The distributed mapping declaration for shared data in
UPC is also different from one in MpC. The simplest dec-
larations in UPC and MpC are shown in Figure 5. Origi-
nally UPC and the former base language Split-C is tailored
to finer grain parallel machines than clusters and its main
target machines seem to be shared memory machines. So
its default declaration of shared data array employs one el-
ement cyclic mapping over all threads as shown in Figure
5(b). It is extremely inefficient for clusters. Moreover the
default data type in UPC is shared, because it employs a
thread model.

In UPC, the number of threads available for data map-
ping must be fixed number, all threads at runtime, because

#include <stdio.h>
#include <mpc.h>
#definr M 1024
#define N 2048

shared double matrix[M][N]::[NPROCS][];
shared double sum::(0);

int main(int argc, char **argv)
{
 FILE fp;
 double mysum=0;

int start, end, i, j;

 mpc_init(argc, argv);
 if(MYPID == 0){
 fp=fopen("initial.dat", "r");
 for(i=0; i<M; i++)
 for(j=0; j<N; j++) fscanf(fp,"%lf", &matirx[i][j]);
 sum = 0;
 }
 mpc_barrier(0);

 start = M/NPROCS*MYPID;
 end = start+M/NPROCS;
 for(i=start; i<end; i++)
 for(j=0; j<N; j++) mysum += process(matrix[i][j]);

 mpc_lock(0);
 sum += mysum;
 mpc_unlock(0);

mpc_barrier(0);
 if(MYPID == 0) printf("Result=%f¥n",sum);
 mpc_exit(0);
}

Figure 4: A MpC program sample

of its SPMD model. In the case of scalar data, they must
be mapped to the first thread fixedly. In MpC, on the other
hand, arbitrary number and subset of processes is available
for various types of data mapping. The comparison between
UPC and MpC is summarized in Table2.

4 MpC Compiler

Our MpC compiler for SDSMs consists of 2 phases:
a MpC-to-C translator and a Meta Process runtime module
builder. In the first phase, the MpC compiler preprocesses
and translates MpC programs into C programs, converting
all MpC parallel APIs into underlying runtime system’s li-
brary function calls. Users can specify the underlying run-
time system, pthread or one of the SDSMs, in their compiler
parameter.

First, the MpC compiler calls a C preprocessor to pro-
cess header files and macros. After that it checks hierarchi-
cal data scope to introduce a shared data type, renames sev-
eral variable names according to standard C grammar, and
inserts necessary program codes to the original program.

In the second phase, it calls a native C compiler to
compile the translated C programs into binary codes for a
target machine. The compiler links it with runtime system
library, a SDSM or pthread. Our MpC compiler assumes
that a target C compiler is gcc, because it is widely used for

MpC: shared int mat[M][N];
UPC: shared [] int mat[M][N];

(a) no division allocated in proc0

MpC: shared int mat[M][N]::[M][N];
UPC: shared int mat[M][N];

(b) 1 element cyclic allocation

MpC: shared int mat[M][N]::[NPROCS][];
UPC: shared [M*N/THREADS] int mat[M][N];

(c) horizontal division

MpC: shared int mat[M][N]::[][NPROCS];
UPC: shared [N/THREADS] int mat[M][N];

(d) vertical division

Figure 5: Distributed mapping difference between UPC and
MpC

MPC UPC

Process specification
for data mapping

start proc: arbitrary
num of procs: arbitrary

array data
start proc: fixed 0
num of procs: fixed all procs

scalar data fixed 0
Flexibility for data

mapping Enough flexible Less Flexible

Memory consistency
model relaxed strict / relaxed

Pointer category 2 types 4 types
Syncro. functions Library Construct, Library
Parallel constructs no forall, sizeof, threadof etc.

Target program type SPMD / MPMD SPMD

Table 2: Comparison between UPC and MpC

compiling programs on various types of machine architec-
ture. In our MpC compiler, the icc is also possible to use
for x86 machine codes generation. As a result, our MpC
compiler is very portable.

So MpC programs can be executed with a SDSM li-
brary on clusters and with pthread library on shared memory
machines.

5 Meta Process Model for clusters

5.1 Implementation for clusters

The Meta Process Model implementation for clus-
ters uses representative user-level software distributed
shared memory (SDSM) system, such as TreadMarks[3],
JIAJIA[4] and SMS[5]. Users can specify one of the
SDSMs as an underlying system in compile time. Each
SDSM’s API has a little difference in its style and its func-
tion, but their basic functions, such as barrier, lock/unlock
and alloc, are almost the same. So the most of the exist-
ing SDSM programs can be translated into other SDSM’s
programs with a little modification.

Moreover these SDSMs have high portability because
of user-level software implementation. TreadMarks runs on

Progs Parameters Data
Size

Barrier
/proc

Lock
/proc

ep M=28,MK=10 44B 2 1
tsp 19cities(19b) 100MB 4 75-122

lu 2048 x 2048
double, 32bloks

34MB 135 0

mm 2048 x 2048
double

96MB 3 0

Table 3: Benchmark programs parameters

CPU Intel Pentium III -S 1.13GHZ
Memory 512MB
Network Intel Proc 1000T

3Com SuperStack3 switch
OS RedhatLinux 7.1.2

kernel 2.4.7.10

gcc version 2.96 -O3

SMS 0.4.16

JIAJIA 2.2

TreadMarks 1.0.3.2

Table 4: Experiment environment

IBM, DEC, SUN, HP, x86 (running FreeBSD or Linux) and
SGI hardware [14]. JIAJIA runs on SUN SPARC stations,
IBM SP2, X86-based Linux 2.0, etc[15]. The MpC pro-
grams linked with such SDSMs’ libraries can be executable
on various types of OSs and architectures. This is a reason
why MpC programs are highly portable.

5.2 Experimental Results on SDSMs

The Meta process performance evaluation for several
programs on three SDSMs, TreadMarks, JIAJIA and SMS,
is investigated. Benchmark programs for this experiment
include ep from NPB, lu from Splash benchmark, tsp from
TreadMarks distribution and mm, matrix multiply, from JI-
AJIA distribution. These benchmark programs are rewritten
in MpC from individual SDSM programs. Their program
parameters are shown in Table3. The experiment hardware
and software environments are shown in Table4. Figure
6,7,8,9 show speedup of the benchmark programs on Tread-
Marks, JIAJIA and SMS.

MpC programs can be executed on three different

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Num of Procs

Sp
ee

du
p

SMS

JIAJIA

Tmk

Figure 6: Speedup of ep on SDSM

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Num of Procs

S
pe

ed
up

SMS

JIAJIA

Tmk

Figure 7: Speedup of lu on SDSM

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Num of Procs

Sp
ee

du
p

SMS

JIAJIA

Tmk

Figure 8: Speedup of mm on SDSM

SDSMs with no modification. Compute-dominate applica-
tions, such as ep and lu have good scalability. The tsp shows
performance difference depending on underlying SDSMs,
because it is distinguished from other programs by having
many lock/unlock calls.

The MpC API is similar to these SDSMs’ APIs, so
MpC program execution suffers from little additional over-
head to direct SDSM program execution.

5.3 The Comparison of MpC and OpenMP

Performance comparison of MpC and OpenMP pro-
grams on clusters was also examined. Omni OpenMP[16]
on SCore5.6.1[17] and MpC on SMS were used for this
measurement. The Omni OpenMP is implemented on

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Num of Procs

Sp
ee

du
p

SMS

JIAJIA

Tmk

Figure 9: Speedup of tsp on SDSM

(sec)
Program Code MpC OpenMP SCASH

Compiler mpcc omcc gcc
Network giga giga myri giga myri

ep 1 11.57 14.45 14.45 13.99
S class 2 5.79 7.69 7.28

 4 2.90 4.57 3.71
 8 1.45 2.76 1.95

Floyd 1 66.65 65.21 65.12 66.80
1024x1024 2 35.01 69.80 46.57

 4 19.42 44.94 25.30
 8 11.38 41.62 14.71

laplace 1 3.36 3.18 3.24 3.26 3.79 3.83
1024x1024 2 2.06 2.73 2.18 2.65 2.33

50ite 4 1.10 1.61 1.21 1.84 1.25
 8 0.75 1.40 0.63 1.39 0.66

mandel 1 1.39 1.44 1.44 1.37
1024x1024 2 0.87 0.84 0.79

dynamic 4 0.54 0.50 0.42
 8 0.43 0.35 0.23

mm 1 12.18 13.50 14.41 12.32
blocked 2 5.16 5.75 5.22

1024x1024 4 3.22 3.87 2.92
 8 2.16 3.60 2.20

galaxy 1 8.52 9.02 9.02 8.75
1000-body 2 4.32 2.98 2.47

10steps 4 1.88 1.61 1.25
100time 8 0.96 1.08 0.65

Table 5: Performance in MpC and OpenMP

SCASH, a SDSM developed on the SCore. Our sys-
tem is based on user-level software but the SCore requires
OS kernel modification. Table5 shows execution times of
6 programs. They include floyed:minimum path search,
laplace:Laplace transformation, mandel:Mandelbrot plot,
mm:matrix multiplication and galaxy:n-body problem. All
have regular program structure, data parallel with for loop,
which is effective for OpenMP’s SPMD model. The clus-
ters have 8 single-CPU nodes. The Omni uses PM for gi-
gabit Ethernet and Myrinet, and MpC uses UDP sockets for
gigabit Ethernet.

In the case of gigabit Ethernet, MpC performance is
better than Omni’s for most of the programs. The floyd and
the mm, where shared data size are large, the MpC’s giga
Ethernet performance is comparable or even better than the
Omni’s Myrinet performance.

6 Meta Process Model for Shared Memory Ma-
chines

6.1 Implementation for Shared Memory Machines

The implemnatation on shared memory machines
uses pthread for the processes in the Meta Process, and
global data in each process are translated to thread specific
data. Only the shared data are shared among the threads.
To make MpC programs run on shared memory machines,
the MpC compiler translates MpC programs into pthread
programs. As shown in Figure 10, the Meta Process is con-
verted to a process and the processes in the Meta Process

Thread1 Thread 2 Thread 3Thread0

Shared Memory machine

 Process Meta Process

Figure 10: Meta Process Model for shared memory ma-
chines

Meta Process Model SDSM installation
for cluster computers

pthread installation
for shared memory machines

a Application
(Meta Process)

A Group of Processes A Process

Unit of parallel
execution entity

A Process A Thread

Data Type in Meta
Process Model

SDSM installation
for cluster computers

pthread installation
for shared memory machines

shared Process shared data
(using SDSM functions)

Thread shared data
(Global variables)

global Process local data
(Global variables)

Thread local data
(Local variables)

local Block local data
(Local variables)

Block local data
(Local variables)

Table 6: The implementation of Meta Process Model for
SDSM and pthread

are converted to threads in a shared memory machine.
The MpC compiler changes original main routines

into a subroutine for each thread and adds a new main rou-
tine, which creates threads that execute that subroutine, and
wait the termination of all threads. It also translates global
variable data in the original MpC programs into thread spe-
cific data and initializes locks and condition variables. Ac-
tual implementation of hierarchical data and execution enti-
ties in the Meta Process Model for shared memory machines
and their counterparts for clusters are shown in Table6.

6.2 Experimental Results on Shared Memory Ma-
chines

Some MpC benchmark programs, such as ep, mm,
galaxy and mandel are run on SMP machines as pthread
programs. Table7 shows execution times of MpC programs
and gnuUPC[18] programs on the SMP machine (Pentium3
2CPUs LINUX). It also shows MpC program results for
a shared memory computing server (IBM rs6000 4CPUs
AIX5.2) and pc cluster (Pentium3 LINUX 8 nodes) with
SMS.

It shows that MpC programs are ported to other type
of machines with no modification and the performance of
these programs are good for each platform.

The execution time of UPC programs such as
galaxy and mm are extremely slow. These programs
use large amount of shared data and their memory-
access/computation ratio are bigger than the other pro-

 (sec)
 MpC MpC MpC gnuUPC 3.2.3.5
 pthread pthread SMS GigaEther
 Num smp 2CPUs rs6000 pc cluster smp 2CPUs

programs of Pentium3 4CPUs LINUX Pentium3
 Procs LINUX2.4.20 AIX5.2 2.4.20-6 LINUX2.4.20-6smp
 -6smp RedHat9 RedHat9 RedHat9
 1 10.82 10.45 11.19 10.15

ep 2 5.54 5.23 6.09 5.09
S class 4 2.65 2.56

 8 1.28 mapping 1ele
galaxy 1 9.02 8.81 8.17 64.05/62.96

1000body 2 4.52 4.42 4.53 32.89/31.5
10 steps 4 2.24 2.53
100time 8 1.63 mapping div/0proc

mandel d 1 1.35 1.03 1.39 1.56/1.47
1024x1024 2 0.68 0.53 0.87 0.79/0.75
0.3<x<0.4 4 0.38 0.54
0.5<y<0.6 8 0.43 mapping 1ele/0proc

mm512 1 0.77 0.61 0.80 15.2/15.2/35.26/9.21
512x512 2 0.40 0.31 0.47 8.16/7.69/17.83/4.64

double array 4 0.17 0.31 mapping
blocked 8 0.29 vb/hb/1ele/0proc
mm1024 1 6.18 4.9 6.90 132.63

1024x1024 2 3.17 2.47 3.47 66.35
double array 4 1.49 2.04

blocked 8 1.57 mapping 0proc

Table 7: Performance in MpC and UPC

grams. Various data mapping specifications, hb:horizontal
band mapping, vb:vertical band mapping, 1ele:one element
cyclic mapping, which is UPC default, and 0proc:no data
distributed mapping/allocated in THREAD0, are tried for
the mm UPC program, but their results are much slower than
MpC one. The details of UPC implementation are not clear,
but some of the mechanism of UPC implementation or the
gnuUPC compiler may not fit to the SMP machines. Cur-
rent gnuUPC compiler for x86 architecture targets for only
SMP machines and it is not available for pc clusters. Other
programs, ep and mandel, are comparable performance to
the MpC program.

7 Conclusion

This paper proposes a new portable parallel program-
ming interface MpC as the API of Meta Process Model. The
design of MpC is presented and its performance on shared
memory machines and clusters has been examined. It shows
the good portability of MpC programs and better perfor-
mance than existing UPC programs and OpenMP programs
on gigabit Ethernet. Moreover, MpC programs have good
readability/writability than MPI programs. It shows that
MpC has a possibility of becoming one of the alternatives
for parallel programming interfaces/languages.

Acknowledgements

The author wishes to thank Professor Hajime Iizuka
for his valuable advice and Shingo Katano and Yoshihito
Watanabe for their contribution to the development of the
MpC compiler.

References

[1] H. Jin, M. Frumkin and J. Yan: The OpenMP Implementa-
tion of NAS Parallel Benchmarks and Its Performance, NAS
Technical Report NAS-99-011, 1999.

[2] D. Takahashi, M.Sato, T.Boku: Performance Evaluation of the
Hitachi SR8000 Using OpemMP Benchmarks, Workshop on
OpenMP, Int’l Workshop on OpenMP (WOMPEI’02), 2002.

[3] P. Keleher, S. Dwarkadas, A.L. Cox, and W. Zwaenepoel:
TreadMarks: Distributed Shared Memory on Standard Work-
stations and Operating Systems, Proc. of the Winter 94 Usenix
Conf., pp.115-131, 1994.

[4] Weiwu Hu, Weisong Shi, Zhimin Tang : JIAJIA: An
SVM System Based on A New Cache Coherence Protocol,
Proc. of the High Performance Computing and Networking
(HPCN’99), LNCS 1593, pp.463-472, 1999.

[5] H.Midorikawa, U.Ohashi, H.Iizuka, The Design and Imple-
mentation of User-Level Software Distributed Shared Mem-
ory System: SMS Implicit Binding Entry Consistency Model,
Proc. of IEEE Pacific Rim Conf. on Communications Com-
puters and Signal Processing, 299-302, 2001.

[6] S.V.Adve, K.Gharachorloo : Shared Memory Consistency
Models: A Tutorial, IEEE Computer vol.29, no.12, pp.66-76,
1996.

[7] Ayon Basumallik, Seung-Jai Min, and Rudolf Eigenmann,
Towards OpenMP execution on software distributed shared
memory systems, Int’l Workshop on OpenMP(WOMPEI’02),
2002.

[8] J. Bircsak, P. Craig, R. Crowell, Z. Cvetanovic, J. Harris,
C. Nelson, and C. Offner, Extending OpenMP for NUMA
Machines. Proc. of the IEEE/ACM Supercomputing 2000
(SC2000), 2000.

[9] V. Schuster and D. Miles. Distributed OpenMP, Extensions
to OpenMP for SMP Clusters, Proc. of the Workshop on
OpenMP (WOMPAT2000), 2000.

[10] Edmond Chow and David Hyson: Assessing Perfor-
mance of Hybrid MPI/OpenMP programs on SMP Clus-
ters, Tech.Report UCRL-JC-143957, Lawrence Livermore
National Laboratoty, 2001.

[11] S.Dong and G.E.Karniadakis: Dual-Level Parallelism for
Deterministic and Stochastic CFD Problems, Proc. of
IEEE/ACM Super Computing 2002, 2002.

[12] H.Midorikawa : Meta Process Model: A New Distributed
Shared Memeory programming Model, Proc. of the 15th
IASTED International Conference on Parallel and Distributed
Computing and Systems, pp.295-300, 2003.

[13] W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, and
K. Warren: Introduction to UPC and Language Specification,
CCS-TR-99-157, IDA Center for Computing Sciences, 1999.

[14] http://www.cs.rice.edu/ willy/TreadMarks/overview.html
[15] http://www.ict.ac.cn/chpc/dsm/index.html
[16] http://phase.hpcc.jp/Omni/home.html
[17] http://www.pccluster.org/index.html.en
[18] http://www.intrepid.com/upc/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

