
META PROCESS MODEL:  
A NEW DISTRIBUTED SHARED MEMORY PROGRAMMING MODEL  

 
H. MIDORIKAWA 

Seikei University 
3-3-1 Kichijojikita-machi Musashino-shi, Tokyo, Japan 

 midori@is.seikei.ac.jp 
Abstract 
 
This paper proposes a new parallel programming model 
named Meta Process model and MpC language for its 
API. The Meta Process model is based on a hierarchical 
shared memory model and is characterized by its explicit 
parallelism description. On these points, this model is 
different from either the shared memory model (SMM) or 
the message passing model (MPM). Meta Process is a 
coined term that represents a group of cooperative 
processes to achieve a single application. The Meta 
Process model introduces shared data that can be 
accessed by all processes in the Meta Process and 
distinguishes process-local and process-shared data 
clearly with using scopes. Processes in a Meta Process 
share a single address space for shared data. Shared data 
are maintained by a relaxed memory consistency model. 
A programmer describes process interactions explicitly 
using shared data access and synchronizing operations, 
such as a barrier or a lock/unlock. So this model enables 
us to write a wide variety of parallel programs, not only 
SPMD programs like OpenMP/HPF but also irregular and 
asymmetric programs. The Meta Process model provides 
us both flexible parallelism description of the MPM and 
good program readability/writability of the SMM. An 
actual installation scheme for this model on the software 
DSM is also described. 
 
Key Words 
Distributed Shared Memory, Parallel Programming, 
Programming Model, Parallel Language 
 
 
1. Introduction 
 
The two most representative parallel programming 
models are the message passing programming model 
(MPM), known as PVM[1] and MPI[2], and the shared 
memory programming model (SMM), such as 
OpenMP[3] and pthread[4]. In MPM, MPI became the 
first standard API for parallel programming and it enables 
general programmers to write parallel programs easily 
without paying  attention to an underlying computer 
configuration. It  greatly contributes to the portability and 
the popularization of parallel programs. On the other hand, 
the SMM has a benefit in good continuity from existing 
sequential programs. Moreover, it alleviates the difficulty 

of reading/writing parallel programs, because it needs no 
bothersome statements for message passing in the 
programs. In this background, OpenMP was proposed as a 
standard API for the SMM, and it showed its 
effectiveness in some shared memory systems[5][6]. 
However, a typical SMM environment, such as pthread 
and OpenMP, is not available to or is not so efficient for 
cluster computers. Cluster computers are widely used 
recently in parallel processing because of their good cost 
performance. Usual cluster computers only have 
relatively low speed connections between computing 
nodes with regard to their CPU performance. They are 
categorized into a distributed memory system. Another 
effort to derive high performance in cluster computers 
with the SMM instead of the MPM is the development of 
software distributed shared memory systems (SDSMs), 
such as TreadMarks[7], JIAJIA[8] and SMS[9]. These 
systems use one of the relaxed memory consistency 
models [10-12] to reduce communication overhead 
between computing nodes. In SDSM programs, 
programmers should be conscious of the relaxed memory 
consistency model employed in the underlying SDSM. 
The pure SMM such as a pthread programming differs in 
this point In addition, programmers should describe the 
parallelism explicitly using shared data access and 
synchronizing operations like a barrier or a lock/unlock. 
This explicit parallelism expression is a similar way to the 
one used in pthread programming. 

 
Using OpenMP on cluster computers, in other words, 
using the SMM on a distributed memory system, usually 
causes more performance degradation than using SDSMs 
[13]. The main reason is OpenMP is originally designed 
for a fork-join parallel thread model in a shared memory 
not for a distributed memory and it places much 
importance on the continuity of sequential programs. Its 
API tends to hide a detail of actual parallel executions and 
data layouts over distributed memory. So it supports no 
distributed data mapping facilities to each cluster node 
and causes implicit and redundant memory consistency 
synchronizations to maintain a single shared memory 
illusion on a distributed memory system. OpenMP  
supports several directives for data environment, such as 
threadprivate, shared, private and first/lastprivate, and it 
can copy private to/from shared data. Though 
programmers cannot control data layout explicitly. Even 
if users do not specify these directives, data attributes are 
changed/copied by OpenMP automatically and implicitly 



when entering/leaving a parallel region. Moreover default 
data attribute is shared, which is  expensive for SDSMs. 
To overcome such degradation, some dialects of OpenMP 
add extended facilities to specify data mapping [14][15]. 
Others explore a hybrid model with OpenMP and MPI. 
Though, the more elaborated facilities are incorporated in 
the extended OpenMP, its simplicity and integrity of 
SMM seems to be more deteriorated. Using such facilities 
causes chaos, where system's implicit executions and 
user-specified explicit executions are complicatedly 
mixed, and it makes programmers more confused. Strictly 
speaking, these extended SMM API is not a SMM API 
any more. Although it is ideal that the same SMM API 
can be available on any systems with high performance 
independently from underlying memory configurations, it 
is actually difficult to achieve high performance on cluster 
computers or NUMA systems if programmers pay no 
attention whether data are local or global, private or 
shared. At current stage, there is a limit to obtain high 
performance using the pure SMM that deals all data in the 
same way without data layout.  
 
In these backgrounds, this paper proposes a new parallel 
programming model named Meta Process model. It is 
based on a distributed shared memory model, not a shared 
memory model, and it employs an explicit parallelism 
description paradigm. It can handle the parallel execution 
on a cluster computer more efficiently compared to the 
SMM. Meta Process is a newly coined term that 
represents a group of cooperative processes to achieve a 
single application. Meta Process model introduces shared 
data that can be accessed by all processes in a Meta 
Process and it distinguishes process-local and process-
shared data distinctly with a hierarchical scope concept. 
For this purpose, a new parallel language MpC, an 
extension of ANSI C, is also proposed as its API. In this 
model, processes in a Meta process share a single address 
space for shared data. A relaxed memory consistency 
model maintains shared data. Each process in a Meta 
process executes its program independently. A 
programmer describes process interaction unambiguously 
in a program using shared data access and synchronizing 
operations. So it enables us to write various types of 
parallel programs, not only SPMD programs in OpenMP,  
HPF[16] or UPC[17-19], but also irregular and 
asymmetric programs. The Meta Process model enables 
us to describe program’s parallelism flexibly like the 
MPM and it makes programmers read/write parallel 
programs easily like the SMM. An actual execution 
scheme of this model on SMS, which is a software DSM 
developed by us, is also described. 
 
 
2. Explicit Parallelism Description 
 
The APIs and languages for the SMM can be categorized 
into two groups. One group places much value on the 
continuity of sequential programs. Another is 
characterized by its explicitly parallel programming 

paradigm. In OpenMP and HPF, one of the most 
appealing points to users is supporting incremental 
parallelism. The incremental parallelism is that a 
programmer can easily extends an original sequential 
program to a parallel program by adding pragma 
statements. If removing these statements, the program can 
execute as a sequential program. In other words, these 
APIs target to sequential algorithms that can be executed 
in partially parallel by adding simple parallelizing 
directives, parallel for, for example. Regular and 
symmetric processing, such as array calculations and loop 
iterations, are typical targets for them. They were not 
designed to implement parallel algorithms, which is 
completely different from sequential ones in some cases. 
Even if people are not familiar to parallel algorithms and 
parallel programs, they can run their sequential programs 
in parallel with their minimum costs. Systems for these 
APIs implicitly parallelize users' programs, so users need 
no detail knowledge of the parallel execution. However, 
these API are not adequate for implementing irregular and 
asymmetric parallel algorithms, which is usually neither 
SPMD nor data-parallel. 
 
On the other hand, in pthread programming, programmers 
should specify parallel execution declaratively. It is the 
API for implementing parallel algorithms, not for 
expanding sequential programs to parallel ones. For 
parallel programmers, it is important to control 
parallelism, load balancing and shared data management, 
differently from sequential programmers. Though they 
favor a good readability and writability of the SMM, 
which has no message passing statements, they do not 
need implicit parallel executions like OpenMP or HPF, 
which degrade the readability of their explicit parallel 
description and their algorithms. 
 
OpenMP and pthread are usually categorized into the 
same programming model, the SMM, but, roughly 
speaking, their main targets are different. One is for a 
community that engages in scientific computations using 
arrays and iterations with affinity to Fortran sequential 
programs. Other is for parallel program developers with 
affinity to C programs. The Meta Process model targets 
the later community like pthread, and it is the model 
where parallel programmers describe parallelism 
explicitly. To implement parallel algorithms, some 
parallel primitives are needed besides existing sequential 
statements. So MpC employs well-known API, such as a 
barrier and a lock/unlock, which is used in pthread and 
representative SDSMs. Moreover MpC supports facilities 
for shared data distributed mapping, which usually do not 
or should not exist in the SMM. 
 
 
3. Meta Process Model  
 
Usually, parallel processing on cluster computers is the 
cooperation of multiple processes on each computing 
node as shown in figure 1. Newly proposed programming 



model deals such cooperative processes distributed over 
the nodes as one execution entity, called Meta Process. 
Each process in a Meta Process is a traditional process, 
which is identified by the node’s OS and associated to 
some resources, such as memory and files. Though Meta 
Process is not identified by ordinary OSs, it is identified 
as a user's single execution entity by some system 
software, which supports a DSM function, for example. 
For a user's view, it is a single application program 
execution on cluster computers. 
 
3.1 Asymmetric Parallel Process Execution  
 
Meta Process has a flexibility that allows both a SPMD 
style execution, where all processes execute the same 
program, and a MPMD style execution, where each 
process executes a different program. Each process in 
Meta Process executes a specified program independently.  
The interaction between processes in a Meta Process is 
specified by a programmer’s explicit directions by 
barrier/lock and shared data access written in each 
program.  
 
What kind of processing is done in each process of a Meta 
Process is specified in a Meta Process description file. It 
includes associations between a logical process name and 
a program module with its arguments. The logical process 
name has no relation to a physical host or node. The 
association of the logical process names and actual nodes 
are done in run time according to a Processor file. So 
Meta Process description file is independent from an 
underlying computer configuration and it only depends on 
a parallel algorithm created by a user. 
 
3.2 Single Shared Address Space 
 
This model introduces two hierarchical execution entities, 
process and Meta Process, and it also provides two 
storage types of data, which can be available in the each 
scope level. First type is local data in a process, the 
second one is global data shared among the processes in a 
Meta Process. For newly introduced shared data, the same 
address used in each process points to the same shared 
data. So users need no message passing statements in their 
programs. Run time data scopes are shown in figure2. The 
scope and the lifetime of process-local data are controlled 
by ANSI C rules, which is automatic, global or static. 
Other  processes  cannot  access  these  process-local data 
 
 
 
 
 
 
 
 
 

directly. Only shared data, which newly defined in the 
model, can be accessible from any process in a Meta 
Process. 
 
3.3 Relaxed Memory Consistency 
 
This model is designed on the premise that shared data is 
maintained by one of the relaxed memory consistency 
models [10], which is often used in SDSMs. So programs 
for this model can be executable both on distributed 
memory systems and on shared memory systems 
efficiently. 
 
3.4 Shared Data Layout  
 
This model provides an API for associating shared data 
with logical processes. To specify the most closely related 
shared data for the process that access them frequently 
enables to achieve high performance on distributed 
memory systems. If such definite association does not 
exist in applications or a user has no knowledge of 
application nature, association specifiers are omissible. In 
that case, an installation of this model associates the 
shared data to an arbitrary process according to the 
installation's policy. The association specifier is a hint for 
the installation system, like register in C language. For 
array data, flexible cyclic data allocations to a sub group 
of processes are supported, which include line, band, tile, 
and cube mapping, etc. A user can declare shared data 
with any association specifiers that appropriate for their 
application. Not only static declarations but also dynamic 
data allocations are possible. 
 
3.5 High Portability 
 
This model can be portable among distributed memory 
systems and shared memory systems. Representative 
SDSMs and pthread have similar APIs, such as a barrier 
and a lock/unlock. Standardizing these similar APIs into 
MpC API standard, it is possible to port MpC programs 
from some SDSM to some other SDSM, or from some 
SDSM to some shared memory system.  
 
 
4. MpC Language 
 
MpC (Meta Process C) is designed to realize the Meta 
Process model on DSMs and shared memory systems. It 
is a parallel extension of ANSI C.  
 
4.1 Shared Storage Class Specifier 
 
In the MpC, shared is newly added to the storage class 
specifier of ANSI C. The data prefixed with a keyword 
shared must be declared outside of functions in at least 
one of the program files that are linked into a single 

P0

node0 

P1 P2

node1 node2 
Meta Process 

Figure 1 Meta Process and its constituent processes



execution program module. The scope of shared data is 
the whole Meta Process, and all processes in the Meta 
process can view and access the data in run time. Like 
global variables in C, an external reference to shared data 
defined in other files also requires extern shared or 
simply shared declaration. The scope hierarchy is shared, 
global and local, in order from external to internal as 
shown in Figure2. If the same variable name is used for 
different scope level data, the most internal variable data 
are effective by the name. In our installation of MpC, 
shared data are allocated dynamically when a Meta 
Process is started, and they are deallocated when the Meta 
Process exits. So the lifetime of shared data can be 
considered to be the same as the static data in C.  
 
The MpC deals pointers like original C, which don't care 
storage type of the content referenced by a pointer. It 
ignores whether the content pointed by the pointer 
variable is shared or local. It only takes account of type 
specifiers, which is int, double or char, for example. The 
MpC simplifies pointer expressions. For an integer 
pointer, only 2 expressions are allowed.  
 
• a local pointer variable which points to integer: 

int *p1; 
• a shared pointer variable which points to integer: 

shared  int  *p2; 
 
In contrast, the other similar language, UPC[17-19] 
supports 4 possibilities as follows. 
 
• a local pointer variable which points to local integer: 

int *q1; 
• a local pointer variable which points to shared integer: 

shared  int *q2; 
• a shared pointer variable which points to local integer: 

int  *shared q3; 
• a shared pointer variable which points to shared integer: 

shared  int  *shared q4; 
 

In the UPC, shared is one of the type qualifiers in ANSI 
C. The MpC regards such 4-pointer distinction is not 
necessary in actual use, and it is natural to deal shared as 
one of the storage classes, which includes auto, register 
and static etc., rather than dealing shared as one of the 
type qualifiers, which includes const and volatile. 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2 Distributed Shared Data Mapping 
 
To realize shared data associations with processes, the 
MpC supports data mapping specifiers. The mapping 
specifier consists of 2 parts, divide information and owner 
information. The mapping specifier follows shared-
prefixed variable names accompanied with :: . Figure 3 
shows an informal definition of shared data with a 
mapping specifier. Figure 4 also shows some examples of 
shared data declarations. Using a mapping specifier, users 
can  inform  an  underlying  installation  of  hints  to 
shared data mapping on processes. Typical mapping 
examples for 2d-array are shown in figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
  
  
  
 
 
 

local 

Process P1 Process P0 

Meta Process 

global 

local 

shared 

global 

Figure 2 The hierarchical data scope  

shared  typespecifier  name mapping specifier 
shared  typespecifier  name [sn]..[si]..[s0] :: [dn]..[di]..[d0] (st,  n)
name[sn]..[si]..[s0] variable name with optional dimensions  
mapping specifier    :: divide information owner information 
divide information     [dn]..[di]..[d0]     optional 
di     the number of division in i'th dimension  (default: 1, not divide) 
owner information  (st,n)     optional 
st          starting process id for mapping (default: arbitrary process) 
n           the number of processes for cyclic mapping 

 (default: all processes in a Meta Process , NPROCS ) 

Figure 3 An informal definition of shared data declaration  

Figure 4  Shared data declaration examples 

shared  int x::(s); scalar data mapped to process st 
shared double y[M];  the whole array is mapped to an arbitrary process
shared float z[M]::[n] (st);  1d-array is divided into n blocks and 

each block is mapped to each process from st to st+n-1 
shared int q[M][L][N]::[ ][n ][ ] (0,n) ;  3d-array is divided into n  

layers in y axis  and mapped to processes from 0 to n-1 individualy

devided into 4 horizontal blocks 
a[M][N]::[4][ ](0,4) 

Figure 5 Typical shared 2d-array data mapping examples 

 0
1

3
2

N

devided into 4 vertical blocks
a[M][N]::[ ][4](0,4) 

  

0 32M 

N

1 

devided into 4 tiles
a[M][N]::[2][2](0,4)

  0 1

32
M

N

  

M 

N

0 32 1 
 

0 321
 

divided int N cyclic blocks
a[M][N]::[ ][N](0,4) 



As parameters for the owner information and the divide 
information, the MpC allows both ordinary constants and 
runtime constants called MpC constants, which are 
NPROCS and MYPID. The NPROCS is the number of 
processes that consist of a Meta Process in execution. The 
MYPID is a unique id number of process that uses 
MYPID in runtime. The values of the MpC constants 
cannot be determined in compile time, but they are fixed 
when a Meta Process execution starts and they are not 
changed during its execution in the current version.  
 
4.3  MpC Standard Library Functions 
 
The MpC has standardized MpC library functions, such as 
barrier, lock/unlock, condition signal/wait, Meta Process 
initialize/finalize, shared data dynamic allocation, etc. 
These standard function calls are translated into 
underlying runtime system's library calls.  
 
 
5. MpC Compiler  
 
Our MpC compiler for SDSMs has 2 components: the 
MpC-to-C translator and the Meta Process runtime 
module builder shown in Figure 6. In the first phase, the 
MpC compiler preprocesses and translates MpC program 
files into ANSI-C code files, with all MpC parallel APIs 
converted into calls of underlying runtime system's library. 
Users can select a target runtime system as a compiler 
parameter. It enables us to execute MpC programs on 
representative SDSMs. The translator also produces a 
shared data information file per program module, which 
is used in the second phase. The translated C codes are  
then compiled using a target machine's C compiler and 
linked to a program module for each process of a Meta 
Process.  
 
In the second phase, the MpC compiler checks the 
consistency and validity of shared data usage among 
constituent processes, using shared data information files 
and a Meta Process description file. The Meta Process 
description file specifies an individual program module 
name and its arguments for each process. For a SPMD 
type execution, the Meta Process description file includes 
a single program module name, its arguments set and the 
number of parallelism. If no inconsistency is found, it 
builds a Meta Process execution file that is tailored for the 
selected runtime systems. Depending on the runtime 
systems, the actual content of the Meta Process execution 
file becomes different, but it is usually implemented as a 
script file.  
 
 
6. Implementation for SDSMs 
 
We have already developed shared-prefixed data 
declarations with distributed shared data mapping for our 
SDSM, SMS [20]. The SMS is a user-level SDSM system 

that runs on most Unix. It provides a global shared 
address space on top of physically distributed memories. 
It is a pege-based DSM and employs newly proposed 
memory consistency model, IBEC (Implicit Binding 
Entry Consistency) [9]. In execution, a Meta Process 
execution file, program modules and a processor file are 
used on the SMS as shown in Figure 7. Mapping to 
logical processes to physical computing nodes are done in 
runtime using a processor file. The processor file includes 
available host names or node names for the Meta Process. 
For the other user-level SDSMs such as the TreadMarks 
and the JIAJIA, the MpC compiler can translate MpC 
programs to C  codes  with  their  native  library  function  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A Meta Process 
Description file 

Shared Data 
Information files

Builder 

Meta Process 
exec file 

Phase 2  Meta Process exec file builder

Figure 6 The structure of MpC Compiler for SDSMs 

Translator 

C Code files for a 
Specified Runtime System

A Program Module 

MpC 
Program files

Target Machine CCRuntime 
System Library

Phase 1  MpC to C 

A Shared Data 
Information file

Run time System (SDMS) 
 

OS 
 

underlying Computer system 

Figure 7 Meta Process runtime environment 
for user-level SDSMs 

Program Modules

A Meta Process 
exec file 

A Processor file



calls. If one of other SDSMs is used as an underlying 
runtime system, some constraints may occur for MpC 
programs and Meta Process. In some SDSMs, a Meta 
Process execution may be limited to SPMD style only. 
Other systems may support no condition signal/wait, or 
they may have only insufficient data layout APIs to 
reflect mapping specifiers in MpC programs. Actually, 
the most of the existing programs written for such SDSMs 
use basic core of MpC APIs, and extending the SDSMs to 
support such functions is not so difficult. 
 
 
7. Conclusion 
 
The Meta Process model, a new distributed shared 
memory programming model, introduces shared data and 
distinguishes process-local and process-shared data 
clearly with a scope concept. Its policy is based on the 
explicit parallelism description. It eliminates the implicit 
parallelism by systems, which is often used in the 
extended SMM and usually causes performance 
degradations. The Meta Process model enables us to get 
better performance and a diversity of parallel programs, 
not only SPMD programs like OpenMP, HPF and UPC, 
but also irregular and asymmetric programs. The Meta 
Process model provides us both flexible parallelism 
description of the MPM and good program 
readability/writability of the SMM.  
  The Meta Process model is similar to the pthread model, 
if a pthread is replaced with a process. Though, the 
pthreads share resources, such as files and sockets, etc.  
To implement our model on ordinary computer clusters 
with a general OS using threads instead of processes, 
some global migratory file descriptors etc. are required. 
So we implement our model with processes.  
  Other related works includes the UPC. The UPC is also 
a language for the distributed shared memory model, but 
its target is only a SPMD program like OpenMP. It 
incorporates parallel statements, i.e. forall, etc., and 
synchronizing as its language level, and employs two 
memory consistency models, strict/relaxed. UPC differs 
from MpC in data mapping API and the treatment of 
pointers. 
 
8. Acknowledgement 
 
I would like to thank Professor Hajime Iizuka of Seikei 
University for his encouragement and valuable advice. I 
also thank Shingo Katano for creative discussion and his 
aid in implementation of MpC preprocessor.  
 
References 
 
[1] PVM http://www.epm.ornl.gov/pvm/  
[2] MPI http://www.unix.mcs.anl.gov/mpi/ 
[3] OpenMP http://www.openmp.org 
[4] David R.Butenhof, Programming with POSIX 
Threads, Addison-Wesley,1997 

[5] H. Jin, M. Frumkin and J. Yan, The OpenMP 
Implementation of NAS Parallel Benchmarks and Its 
Performance: NAS Technical Report NAS-99-011,1999  
[6] D. Takahashi, M.Sato, T.Boku, Performance 
Evaluation of the Hitachi SR8000 Using OpemMP 
Benchmarks:Workshop on OpenMP, Int'l Workshop on 
OpenMP (WOMPEI'02),  2002 
[7] P. Keleher, S. Dwarkadas, A.L. Cox, and W. 
Zwaenepoel, TreadMarks: Distributed Shared Memory on 
Standard Workstations and Operating Systems: Proc. of 
the Winter 94 Usenix Conf., 1994, 115-131. 
[8] Weiwu Hu, Weisong Shi, Zhimin Tang, JIAJIA: An 
SVM System Based on A New Cache Coherence 
Protocol: Proc. of the High Performance Computing and 
Networking (HPCN'99), LNCS 1593, 1999, 463-472. 
[9] H.Midorikawa, U.Ohashi, H.Iizuka, The Design and 
Implementation of User-Level Software Distributed 
Shared Memory System: SMS Implicit Binding Entry 
Consistency Model -: Proc. of IEEE Pacific Rim Conf. on 
Communications Computers and Signal Processing, 
2001, 299-302. http://sirius.is.seikei.ac.jp/~midori/paper/ 
rim01.pdf  
[10] S.V.Adve, K.Gharachorloo,: Shared Memory 
Consistency Models: A Tutorial, IEEE Computer 
vol.29,no.12, 1996,  66-76. 
[11] P. Keleher, A.L. Cox, and W. Zwaenepoel, Lazy 
Release Consistency for Software Distributed Shared 
Memory: Proc. of the 19th Symp. on Computer 
Architecture, 1992, 13-21. 
[12] Liviu Iftode, Jaswinder Pal Singh and Kai Li., Scope 
Consistency: A Bridge between Release Consistency and 
Entry Consistency: Theory of Computing Systems, 31, 
1998, 451-473 
[13] Ayon Basumallik, Seung-Jai Min, and Rudolf 
Eigenmann, Towards OpenMP execution on software 
distributed shared memory systems, Int'l Workshop on 
OpenMP(WOMPEI'02),  2002. 
[14] J. Bircsak, P. Craig, R. Crowell, Z. Cvetanovic, J. 
Harris, C. Nelson, and C. Offner,  Extending OpenMP for 
NUMA Machines. Proc. of the IEEE/ACM 
Supercomputing 2000 (SC2000), 2000.  
[15] V. Schuster and D. Miles. Distributed OpenMP, 
Extensions to OpenMP for SMP Clusters, Proc. of the 
Workshop on OpenMP (WOMPAT2000), 2000.  
[16] High Performance Fortran Language Specification 
High Performance Fortran Forum January 31, 1997 , 
Version 2.0, http://dacnet.rice.edu/Depts/CRPC/HPFF/ 
versions/hpf2/hpf-v20/index.html 
[17] W. Carlson, J. Draper, D. Culler, K. Yelick, E. 
Brooks, and K. Warren., Introduction to UPC and 
Language Specification: CCS-TR-99-157, IDA Center for 
Computing Sciences, 1999 
[18] T.El Ghazawi and F. Cantonnet. UPC performance 
and potential: A NPB experimental study: Proc. Super 
computing2002 (SC2002), 2002 
[19] UPC http://upc.gwu.edu/ 
[20] H.Midorikawa, S.Katano, H.Iizuka, The APIs for the 
shared data distributed mapping on software DSM SMS: 
Procs. of FIT2002 vol. B-42, 2002, 171-172 (in Japanese) 


