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1. Introduction 
  A distributed shared memory system, named SMS, 
is a user-level software system. It provides a virtual 
shared memory environment on a computer cluster 
consisting of computers connected by a communication 
network.  Although the SMS requires only 
commodity hardware and software, it enables users to 
write parallel programs under a shared memory 
programming model. 
 
2. Distributed Shared Memory System SMS 

The SMS has several features. 
l User-level software implementation 

The SMS requires no specific functions or 
privileged level processing for an OS.  It can be 
easily installed on any PC or workstation cluster 
system with a Unix-based OS, like Linux or 
FreeBSD. It realizes a shared-memory 
programming environment on systems with 
commodity hardware and free software without 
root privilege. 

l General socket communication with TCP or UDP 
The SMS uses a widely used communication 

protocol, TCP or UDP, and no special 
communication functions dependent on underlying 
communication devices. Any communication 
devices that support TCP or UDP are possible to 
use with SMS, a fast-Ether, a giga-bit Ether or a 
Myrinet for your budge and speed requirements. 

l New relaxed memory consistency model 
The SMS employs a newly proposed IBEC 

(Implicit Binding Entry Consistency) as a memory 
consistency model.  It is a variant of the entry 
consistency model, but implicitly binds shared data 
with a lock variable. 

l Condition variables  
To manage exclusive access to shared data more 

efficiently, the SMS supports functions for 
condition variables, condition_wait(), 
condition_signal() and condition_broadcast(), 
besides ordinary shared data access control 
functions, lock(), unlock() and barrier(). These 
functions were not supported in most of the other 
distributed shared memory systems.  

l Virtual processor independent from underlying 
computer configuration  
An arbitrary number of virtual processors 

(processes) can be forked independently from the 
number of available computers or CPUs. The 

SMS can be installed on not only a single-CPU 
computer cluster but also a multiple-CPU 
computer (SMP) cluster. 

 
3. Design  
3.1  Implicit binding entry consistency (IBEC) 

The IBEC is one of the relaxed memory consistency 
models, which makes communication traffic for 
memory update lighter, as an entry consistency (EC) 
and a lazy release consistency (LRC).  When 
compared to the LRC or a release consistency (RC), 
the IBEC is characterized by its multiple time clocks, 
which are related to lock variables. The LRC has a 
unique global time clock and its shared data is 
updated in the global time stamp order. On the other 
hand, in IBEC, shared data updates are done 
independently unless these data are not associated 
with the same lock variable. Moreover the IBEC has 
no explicit description in programs to associate a lock 
variable with a shared data variable unlike the 
programs under the EC model. Binding a lock 
variable with a shared data variable is done 
automatically on program execution. 

 
3.2  User Interface  

Table1 shows C functions and constants provided by 
SMS. Figure1 shows a simple program example for 
SMS. 

 
sms_nproc  :Number of processes  
sms_proc_id  :Process ID( id=0,1,2,...) 
void sms_startup(int argc,char *argv)   
void sms_shutdown()   
void sms_error(char *errmsg)   
void *sms_alloc(int size,int PageM_pid)  
void *sms_calloc(int num, int itemsize,int PageM_pid) 
void sms_change_page_manager(void *adr,int size,int PageM_pid) 
void sms_barrier(int BarrierM_pid)  
void sms_lock(int Lock_id)   
void sms_unlock(int Lock_id)   
void sms_cond_wait(int cond_id, int Lock_id)  
void sms_cond_signal(int cond_id)   
void sms_cond_broadcast(int cond_id)  
 Table1 SMS Constant and Functions 
 
4. Implementation 
4.1 Page based distributed shared memory system 

The SMS uses a memory protection mechanism in a 
memory management system for a detection of access 
to shared data, so shared data in the SMS is based on 
a memory page with a page manager specified when 
the data is allocated. Figure2 shows a page status 



diagram. Page managers are responsible for 
transmitting required pages to requesting processors 
when shared data is first accessed. All pages are 
updated just after barrier() to maintain memory 
consistency. If a page cached in a processor is not 
accessed for a long time, the page is thrown out and its 
page status is changed to unmapped. This mechanism 
is effective to reduce unnecessary communication 
traffic for updates.  

  

Figure 1   SMS Program example 
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Figure 2   Page State Diagram 

 
4.2  Multiple granularity for shared data update 

Share data updates for memory consistency 
maintenance are done in different levels based on the 
granularity specified when the data was allocated. 
When a barrier() or a lock() is called, data update 
information is made by comparing the page where the 
data exists to its twin page, which was copied when 
the data was first written after previous barrier(). Its 
comparison is basically made byte by byte. Though, if 
a granularity is specified, both a comparison to make 
update information and an application of this update 
information to a page in other processor are done in 
this granularity, as in integer, short, double, float, or 
an arbitrary number byte size. It is very effective in 
reducing the total amount of communication traffic for 
updates and processing time to apply an update to a 
page. 

 
4.3 Barrier manager and Lock manager 

A barrier manager can be specified in barrier() by 
users and it is responsible for the barrier execution. It 
manages a synchronization of multiple process 
executions and an update of all shared data in 
processors. When lock() and unlock() are called, lock 
managers are responsible for the related data 
updating and an exclusive data access control. Lock 
managers are allocated to a processor automatically in 
round-robin fashion or statically. To manage condition 
variables, condition managers are usually allocated to 
the lock manager process that is responsible for the 
same lock variable associated with the condition 
variable.  

 
4.4 Socket communication 

Communication between processors is done in 
interrupted communication using a signal. Both TCP 
and UDP are options for users when the SMS system 
is configured. Two sockets are used between processes 
for data transmission and control signals. 
 
5. Performance 

The performance of SMS is evaluated in two 
environments shown in Table2. Figure3 and Figure 4 
show comparisons with PVM and MPICH for an 
n-body problem and MandelBrot set calculation 
respectively. Figure3 includes two PVM programs 
with different communication patterns, a master 
administrative and a slave distributed. The 
performance differences among PVM, MPICH and 
SMS are mainly caused by the communication pattern 
difference in each programs. Even using 
message-passing systems, such as MPICH and PVM, a 
communication traffic congestion causes a degradation 
in their performance, such as the PVM 
master-concentrated program in Figure3(a). The 
barrier synchronization in the SMS makes a moderate 
level of traffic concentration because the each process’s 
arrival time to the same barrier is different, so the 
time of an update information transmission disperses. 
The more the number of iterations in n-body problem 

#include<stdio.h> 
#include<sms.h>  /* sms header file */ 
#define NUM 1024 
void main(int argc,  char *argv[ ]) 
{ 

int *data, *max, n, i; 
FILE *frp; 
frp = fopen (argv[1],"r");   /*data file*/ 
sms_startup(argc, argv);   /* sms startup */ 
n=NUM / sms_nproc; 
/* allocate shared data */ 
data=(int *)sms_calloc(NUM, sizeof(int),0); 
max =(int *)sms_alloc(sizeof(int),0); 
/* Data initialization by master process */ 
if(sms_proc_id==0){ 

for(i=0; i<NUM; i++) fscanf(frp,"%d",&data[i]); 
*max=0; 

} 
/* search max by all processes */ 
sms_barrier(0);      /* barrier synchronization */ 
for(i=sms_proc_id*n;  i < (sms_proc_id+1)*n;  i++) 
{ sms_lock(0);     /* lock acquire */ 

if(*max < data[i])  *max = data[i]; 
sms_unlock(0);   /* lock release */ 

} 
sms_barrier(0);       /* barrier synchronization */ 

/* result output by master process */ 
if(sms_proc_id==0) printf("max =%d¥n",*max); 
sms_shutdown();     /* sms shutdown  */ 
} 



becomes, the less a communication pattern difference 
affects the performance as in Figure3 (b). 

Figure5 and Figure6 show comparisons with 
  
Table 2  Performance Evaluation Environment 
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Figure 4  SMS  v.s. message passing system 

TreadMarks, the widely known software shared 
memory systems, for the same applications. Figure7 
shows message bytes and a message count in master 
process for each program. In UDP packet level,   

message traffic in TreadMarks is less than SMS, but 
the performances especially in Figure 5(a) and Figure 
6 are poor than SMS. One of the reasons is that the 
TreadMarks takes more time to startup processes. As 
the number of processes increase, the ratio of startup 
time in total execution time increases, which results in 
poor performance compared with SMS. 

The performance of SMS is comparable or better 
than PVM, MPI, and TreadMarks for these programs.   

 
6. Conclusion 

The SMS was designed with IBEC model, to realize 
a shared memory programming environment on a 
computer cluster. Not only dose it enable us to write a 
parallel program easier, but it achieves a comparable 
performance to MPI, PVM and TreadMarks. 
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Figure 3  SMS  v.s. message passing system 
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Environment1  8PCs (8CPUs) 
l CPU     Intel MMX Pentium 166MHz 
l Memory  64MB 
l OS       FreeBSD2.2.2R 
l Network  100Mbps Ether Hub/Switch 
 
Environment2  8PCs (8CPUs) 
l CPU      Intel  Celeron 400MHz 
l Memory   128MB 
l OS       RedHatLinux6.0( Kernel2.2.5-15) 
l Network  100Mbps Ether Hub/Switch 
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Figure 7  Message Comparison in process0 
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Figure 5  SMS v.s. TreadMarks  
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Figure 7  Message Comparison in process 


