
The Design and Implementation of User-Level Software
Distributed Shared Memory System: SMS
― Implicit Binding Entry Consistency Model ―

Seikei University
Hiroko Midorikawa, Yusuke Ohashi, Hajime Iizuka

1. Introduction
 A distributed shared memory system, named SMS,
is a user-level software system. It provides a virtual
shared memory environment on a computer cluster
consisting of computers connected by a communication
network. Although the SMS requires only
commodity hardware and software, it enables users to
write parallel programs under a shared memory
programming model.

2. Distributed Shared Memory System SMS

The SMS has several features.
l User-level software implementation

The SMS requires no specific functions or
privileged level processing for an OS. It can be
easily installed on any PC or workstation cluster
system with a Unix-based OS, like Linux or
FreeBSD. It realizes a shared-memory
programming environment on systems with
commodity hardware and free software without
root privilege.

l General socket communication with TCP or UDP
The SMS uses a widely used communication

protocol, TCP or UDP, and no special
communication functions dependent on underlying
communication devices. Any communication
devices that support TCP or UDP are possible to
use with SMS, a fast-Ether, a giga-bit Ether or a
Myrinet for your budge and speed requirements.

l New relaxed memory consistency model
The SMS employs a newly proposed IBEC

(Implicit Binding Entry Consistency) as a memory
consistency model. It is a variant of the entry
consistency model, but implicitly binds shared data
with a lock variable.

l Condition variables
To manage exclusive access to shared data more

efficiently, the SMS supports functions for
condition variables, condition_wait(),
condition_signal() and condition_broadcast(),
besides ordinary shared data access control
functions, lock(), unlock() and barrier(). These
functions were not supported in most of the other
distributed shared memory systems.

l Virtual processor independent from underlying
computer configuration
An arbitrary number of virtual processors

(processes) can be forked independently from the
number of available computers or CPUs. The

SMS can be installed on not only a single-CPU
computer cluster but also a multiple-CPU
computer (SMP) cluster.

3. Design
3.1 Implicit binding entry consistency (IBEC)

The IBEC is one of the relaxed memory consistency
models, which makes communication traffic for
memory update lighter, as an entry consistency (EC)
and a lazy release consistency (LRC). When
compared to the LRC or a release consistency (RC),
the IBEC is characterized by its multiple time clocks,
which are related to lock variables. The LRC has a
unique global time clock and its shared data is
updated in the global time stamp order. On the other
hand, in IBEC, shared data updates are done
independently unless these data are not associated
with the same lock variable. Moreover the IBEC has
no explicit description in programs to associate a lock
variable with a shared data variable unlike the
programs under the EC model. Binding a lock
variable with a shared data variable is done
automatically on program execution.

3.2 User Interface

Table1 shows C functions and constants provided by
SMS. Figure1 shows a simple program example for
SMS.

sms_nproc :Number of processes
sms_proc_id :Process ID(id=0,1,2,...)
void sms_startup(int argc,char *argv)
void sms_shutdown()
void sms_error(char *errmsg)
void *sms_alloc(int size,int PageM_pid)
void *sms_calloc(int num, int itemsize,int PageM_pid)
void sms_change_page_manager(void *adr,int size,int PageM_pid)
void sms_barrier(int BarrierM_pid)
void sms_lock(int Lock_id)
void sms_unlock(int Lock_id)
void sms_cond_wait(int cond_id, int Lock_id)
void sms_cond_signal(int cond_id)
void sms_cond_broadcast(int cond_id)
 Table1 SMS Constant and Functions

4. Implementation
4.1 Page based distributed shared memory system

The SMS uses a memory protection mechanism in a
memory management system for a detection of access
to shared data, so shared data in the SMS is based on
a memory page with a page manager specified when
the data is allocated. Figure2 shows a page status

diagram. Page managers are responsible for
transmitting required pages to requesting processors
when shared data is first accessed. All pages are
updated just after barrier() to maintain memory
consistency. If a page cached in a processor is not
accessed for a long time, the page is thrown out and its
page status is changed to unmapped. This mechanism
is effective to reduce unnecessary communication
traffic for updates.

Figure 1 SMS Program example

UNMAPPED

READ_ONLY READ_WRITE

NO_ACCESS

BARRIER
（Non-Manager）

 BARRIER
（Manager）

WRITE MISS

READ
MISS

READ
MISS

UNMAPPED
TIME OUT

WRITE
MISS

WRITE
MISS

Figure 2 Page State Diagram

4.2 Multiple granularity for shared data update

Share data updates for memory consistency
maintenance are done in different levels based on the
granularity specified when the data was allocated.
When a barrier() or a lock() is called, data update
information is made by comparing the page where the
data exists to its twin page, which was copied when
the data was first written after previous barrier(). Its
comparison is basically made byte by byte. Though, if
a granularity is specified, both a comparison to make
update information and an application of this update
information to a page in other processor are done in
this granularity, as in integer, short, double, float, or
an arbitrary number byte size. It is very effective in
reducing the total amount of communication traffic for
updates and processing time to apply an update to a
page.

4.3 Barrier manager and Lock manager

A barrier manager can be specified in barrier() by
users and it is responsible for the barrier execution. It
manages a synchronization of multiple process
executions and an update of all shared data in
processors. When lock() and unlock() are called, lock
managers are responsible for the related data
updating and an exclusive data access control. Lock
managers are allocated to a processor automatically in
round-robin fashion or statically. To manage condition
variables, condition managers are usually allocated to
the lock manager process that is responsible for the
same lock variable associated with the condition
variable.

4.4 Socket communication

Communication between processors is done in
interrupted communication using a signal. Both TCP
and UDP are options for users when the SMS system
is configured. Two sockets are used between processes
for data transmission and control signals.

5. Performance

The performance of SMS is evaluated in two
environments shown in Table2. Figure3 and Figure 4
show comparisons with PVM and MPICH for an
n-body problem and MandelBrot set calculation
respectively. Figure3 includes two PVM programs
with different communication patterns, a master
administrative and a slave distributed. The
performance differences among PVM, MPICH and
SMS are mainly caused by the communication pattern
difference in each programs. Even using
message-passing systems, such as MPICH and PVM, a
communication traffic congestion causes a degradation
in their performance, such as the PVM
master-concentrated program in Figure3(a). The
barrier synchronization in the SMS makes a moderate
level of traffic concentration because the each process’s
arrival time to the same barrier is different, so the
time of an update information transmission disperses.
The more the number of iterations in n-body problem

#include<stdio.h>
#include<sms.h> /* sms header file */
#define NUM 1024
void main(int argc, char *argv[])
{

int *data, *max, n, i;
FILE *frp;
frp = fopen (argv[1],"r"); /*data file*/
sms_startup(argc, argv); /* sms startup */
n=NUM / sms_nproc;
/* allocate shared data */
data=(int *)sms_calloc(NUM, sizeof(int),0);
max =(int *)sms_alloc(sizeof(int),0);
/* Data initialization by master process */
if(sms_proc_id==0){

for(i=0; i<NUM; i++) fscanf(frp,"%d",&data[i]);
*max=0;

}
/* search max by all processes */
sms_barrier(0); /* barrier synchronization */
for(i=sms_proc_id*n; i < (sms_proc_id+1)*n; i++)
{ sms_lock(0); /* lock acquire */

if(*max < data[i]) *max = data[i];
sms_unlock(0); /* lock release */

}
sms_barrier(0); /* barrier synchronization */

/* result output by master process */
if(sms_proc_id==0) printf("max =%d¥n",*max);
sms_shutdown(); /* sms shutdown */
}

becomes, the less a communication pattern difference
affects the performance as in Figure3 (b).

Figure5 and Figure6 show comparisons with

Table 2 Performance Evaluation Environment

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

Linux galaxy -s1000 -S10 -T100

SMSUDP0.4.3bperf
SMSTCP0.4.3bperf
PVM Master perf
PVM Child sends individually perf
MPICHperf

Num of Procs
(a) N-body problem, 1000bodies 10 ite. (Env.2)

Figure 3 SMS v.s. message passing system

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8

Linux M andelStatic 4096 0.3, 0.4 , 0.5, 0.6Ti m e

SMSUDP0.4.3bperf
SMSTCP0.4.3bperf
MPICHperf
PVMMasterSlaveperf
PVMSPMDperf

Num of Procs
(a) MandelBrot Static problem (Env.2)

Figure 4 SMS v.s. message passing system

TreadMarks, the widely known software shared
memory systems, for the same applications. Figure7
shows message bytes and a message count in master
process for each program. In UDP packet level,

message traffic in TreadMarks is less than SMS, but
the performances especially in Figure 5(a) and Figure
6 are poor than SMS. One of the reasons is that the
TreadMarks takes more time to startup processes. As
the number of processes increase, the ratio of startup
time in total execution time increases, which results in
poor performance compared with SMS.

The performance of SMS is comparable or better
than PVM, MPI, and TreadMarks for these programs.

6. Conclusion

The SMS was designed with IBEC model, to realize
a shared memory programming environment on a
computer cluster. Not only dose it enable us to write a
parallel program easier, but it achieves a comparable
performance to MPI, PVM and TreadMarks.

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

Linuxgalaxy　1000 -s1　-T100　

SMSUDP0.4.3bperf
SMSTCP0.4.3bperf
MPICHperf
PVM Child sends individually perf
PVM Master perf

Num of Procs
(b) N-body problem, 1000bodies 100 ite (Env.2)

Figure 3 SMS v.s. message passing system

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

LinuxMa ndel Dynamic 4096 0.3,0.4,0.5,0.6

SMSUDP0.4.3bperf
SMSTCP0.4.3bperf
PVMSPMDperf
MPICH 9 perf

Num of Procs
(b) MandelBrot Dynamic problem (Env.2)
Figure 4 SMS v.s. message passing system

Environment1 8PCs (8CPUs)
l CPU Intel MMX Pentium 166MHz
l Memory 64MB
l OS FreeBSD2.2.2R
l Network 100Mbps Ether Hub/Switch

Environment2 8PCs (8CPUs)
l CPU Intel Celeron 400MHz
l Memory 128MB
l OS RedHatLinux6.0(Kernel2.2.5-15)
l Network 100Mbps Ether Hub/Switch

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

1 2 3 4 5 6 7 8

T m k
s m s 0 . 4 . 3 b

N u m o f P r o c s
(a) N-body problem 100bodies 100 ite (Env.2)

Figure 5 SMS v.s. TreadMarks

0

1

2

3

4

5

1 2 3 4 5 6 7 8

mandel static SMS
mandel static TreadMarks

Num of Procs
(a) MandelBrot static allocation 1024X1024

(Env.2)
Figure 6 SMS v.s. TreadMarks

0

1 10 7

2 10 7

3 10 7

4 10 7

5 10 7

6 10 7

7 10 7

SMS Total Bytes
Tmk Total Bytes
PVM Galaxy1 Total Bytes
PVM Galaxy2 Total Bytes

Programs
(ａ) Message bytes

Figure 7 Message Comparison in process0

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

T m k
s m s 0 . 4 . 3 b

N u m o f P r o c s
(b) N-body problem 1000bodies 10 ite. (Env.2)

Figure 5 SMS v.s. TreadMarks

0

1

2

3

4

5

1 2 3 4 5 6 7 8

mandel daynamic SMS
mandel dynamic TreadMarks

Num of Procs
(b) MandelBrot dynamic allocation 1024X1024, 64

blocks (Env.2)
Figure 6 SMS v.s. TreadMarks

0

5 0 0 0

1 1 0 4

1 . 5 1 0 4

2 1 0 4

2 . 5 1 0 4

3 1 0 4

3 . 5 1 0 4

S M S M e s s a g e C o u n t
T m k M e s s a g e C o u n t
P V M G a l a x y 1 M e s s a g e C o u n t
P V M g a l a x y 2 M e s s a g e C o u n t

P r o g r a m s
 (b) Message count

Figure 7 Message Comparison in process

